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Abstract. We offer a variant of Radon transforms for a pair X and Y of hyperboloids in R3

defined by [x, x] = 1 and [y, y] = −1, y1 > 1 , respectively, here [x, y] = −x1y1+x2y2+x3y3 .
For a kernel of these transforms we take δ([x, y]) , δ(t) being the Dirac delta function. We
obtain two Radon transforms D(X ) → C∞(Y) and D(Y) → C∞(X ) . We describe kernels
and images of these transforms. For that we decompose a sesqui-linear form with the kernel
δ([x, y]) into inner products of Fourier components.
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In this paper we offer a variant of Radon transforms for a pair of dual hyperboloids in R3 :
the one-sheeted hyperboloid X : [x, x] = 1 ( [x, y] = −x1y1+x2y2+x3y3 ) and the upper sheet
of the two-sheeted hyperboloid Y : [y, y] = −1, y1 > 1 (the Lobachevsky plane). For a kernel
of these transforms we take δ([x, y]), x ∈ X , y ∈ Y , δ(t) being the Dirac delta function.
This kernel gives two Radon transforms R : D(X )→ C∞(Y) and R∗ : D(Y)→ C∞(X ). We
describe kernels and images of these transforms. For that we consider a sesqui-linear form
with the kernel δ([x, y]) and write the decomposition of this form into inner products of
Fourier components. Results of this paper were announced in [4].

1. Hyperboloids

Let G be the group SO0(1, 2), it is a connected group of linear transformations of R3,

preserving the form
[x, y] = −x1y1 + x2y2 + x3y3.

We consider that G acts on R3 from the right. In accordance with this we write vectors in
the row form.

Let us take the following basis of the Lie algebra g of the group G :

L0 =

 0 0 0

0 0 −1

0 1 0

 , L1 =

 0 1 0

1 0 0

0 0 0

 , L2 =

 0 0 1

0 0 0

1 0 0

 . (1.1)

The Casimir element in the universal enveloping algebra of g is (1/2)∆g, where

∆g = −L2
0 + L2

1 + L2
2. (1.2)

Consider subgroups K, H, A of the group G generating by elements L0, L1, L2,

respectively. The subgroup K is a maximal compact subgroup of G.
Denote by X the one-sheeted hyperboloid [x, x] = 1, and by Y the upper sheet of the

two-sheeted hyperboloid [y, y] = −1, y1 > 1 (we consider that the x1 -axis goes up). These
hyperboloids X and Y are homogeneous spaces of the group G with respect to translations
x 7→ xg, namely, X = G/H and Y = G/K. The subgroups H and K are stabilizers of
points x0 = (0, 0, 1) ∈ X and y0 = (1, 0, 0) ∈ Y respectively.

These hyperboloids have a G -invariant metric. It gives rise to the measures dx and dy

and the Laplace–Beltrami operators ∆X and ∆Y respectively (all are G -invariant).
As local coordinates on the hyperboloids we can take any two variables from x1, x2, x3.

For Y it is natural to take y2, y3. Then we have

dx = |x1|−1dx2dx3, dy = y−11 dy2dy3,

∆X =
∂2

∂x21
− ∂2

∂x22
+D2

1 +D1, D1 = x1
∂

∂x1
+ x2

∂

∂x2
,

∆Y =
∂2

∂y22
− ∂2

∂32
2

+D2
1 +D1, D1 = y2

∂

∂y2
+ y3

∂

∂y3
.

If M is a manifold, then D(M) denotes the space of compactly supported infinitely
differentiable C -valued functions on M, with the usual topology, and D′(M) denotes
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the space of distributions on M — of antilinear continuous functionals on D(M). For a
differentiable representation of a Lie group, we retain the same symbol for the corresponding
representations of its Lie algebra and of the universal enveloping algebra.

Let us denote by UX and UY representations of our group G by translations on functions
on X and X respectively (quasiregular representations):

(UX (g)f)(x) = f(xg), (UX (g)f)(y) = f(yg).

The representations UX and UY on the spaces L2(X , dx) and L2(Y , dy) are unitary with
respect to the inner products

〈F, f〉X =

∫
X
F (x)f(x)dx, 〈F, f〉Y =

∫
Y
F (y)f(y)dy. (1.3)

We have
UX (∆g) = ∆X , UY(∆g) = ∆Y . (1.4)

2. Representations of the group SO0(1, 2)

Recall some material about the principal non-unitary series of representations of the
group G = SO0(1, 2), see, for example, [5]. Let C+ be the cone [x, x] = 0, x1 > 0. The
group G acts transitively on it. For σ ∈ C, let Dσ(C+) be the space of C∞ functions ϕ

on C+ homogeneous of degree σ :

ϕ(tx) = tσϕ(x), t > 0.

Let Tσ be the representation of G acting on this space by translations:

(Tσ(g)ϕ)(x) = ϕ(xg).

Take the section S of the cone C+ by the plane x1 = 1, it is a circle consisting of points
s = (1, sinα, cosα). The Euclidean measure on S is ds = dα. For a function ϕ on S,

sometimes we write ϕ(α) instead of ϕ(s). The representation Tσ can be realized on the
space D(S) as follows (index 1 indicates the first coordinate of a vector):

(Tσ(g)ϕ)(s) = ϕ

(
sg

(sg)1

)
(sg)σ1 .

The element ∆g, see (1.2), goes to a scalar operator:

Tσ(∆g) = σ(σ + 1)E. (2.1)

The Hermitian form
〈ψ, ϕ〉S =

∫
S

ψ(s)ϕ(s)ds (2.2)

is invariant with respect to the pair (Tσ, T−σ−1), i. e.

〈Tσ(g)ψ, ϕ〉S = 〈ψ, T−σ−1(g−1)ϕ〉S. (2.3)

This formula follows from ds̃ = (sg)−11 ds, where s̃ = (sg)/(sg)1.
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Define an operator Aσ in D(S) :

(Aσϕ)(s) =

∫
S

(−[s, u])−σ−1ϕ(u)du.

The integral converges absolutely for Reσ < −1/2 and can be continued as a meromorphic
function to the whole σ -plane. It has simple poles at σ ∈ −1/2 + N. Here and further
N = {0, 1, 2, ...}. For Aσ we have

〈Aσψ, ϕ〉S = 〈ψ,Aσϕ〉S. (2.4)

The operator Aσ intertwines Tσ and T−σ−1, i. e.

T−σ−1(g)Aσ = AσTσ(g), g ∈ G.

A sesqui-linear form 〈Aσψ, ϕ〉S is invariant with respect to the pair (Tσ, Tσ). In particular,
for σ ∈ R, this form is an invariant Hermitian form for Tσ.

Take a basis ψm(α) = eimα, m ∈ Z, in D(S). It consists of eigenfunctions of Aσ :

Aσψm = a(σ,m)ψm, (2.5)

where
a(σ,m) = 2σ+2π(−1)m

Γ(−2σ − 1)

Γ(−σ +m)Γ(−σ −m)
. (2.6)

The composition AσA−σ−1 is a scalar operator:

AσA−σ−1 =
1

8πω(σ)
· E

where ω(σ) is a “Plancherel measure” (see (5.2)):

ω(σ) =
1

32π2
(2σ + 1) cotσπ. (2.7)

The representation Tσ can be extended to the space D′(S) of distributions on S by
formula (2.3) where ψ is a distribution and 〈ψ, ϕ〉S is the value of the distribution ψ at a
test function ϕ. It is an extension in fact, since D(S) can be embedded into D′(S) by means
of the form (2.2), namely, we assign to a function ψ ∈ D(S) the functional ϕ 7→ 〈ψ, ϕ〉S in
D′(S).

Similarly the operator Aσ can be extended to the space D′(S) by means of formula
(2.4).

If σ is not integer, then Tσ is irreducible and Tσ is equivalent to T−σ−1 (by Aσ or Âσ).
Let σ ∈ Z, n ∈ N. Subspaces Vσ,+ and Vσ,+ spanned by ψm for which m > −σ and

m 6 σ respectively are invariant. For σ < 0 they are irreducible and orthogonal to each
other. For σ > 0 their intersection Eσ is irreducible and has dimension 2σ + 1.

Let V d
n = D(S)/En and V d

−n−1 = V−n−1,+ + V−n−1,−. Let us denote by T dσ , σ ∈ Z, the
representation on V d

σ generated by Tσ. The operator An vanishes on En and gives rise to
the equivalence T dn ∼ T d−n−1.
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There are four series of unitarizable irreducible representations: the continuous series
consisting of representations Tσ with σ = −1/2 + iρ, ρ ∈ R, the inner product is (2.2); the
complementary series consisting of Tσ with −1 < σ < 1, the inner product is 〈Aσψ, ϕ〉S
with a factor; the holomorphic and antiholomorphic series. We need only their sum T dσ . We
shall call T dσ the representations of discrete series. For ϕ ∈ D(S), denote by ϕ̃ the coset
of ϕ modulo En. Then the invariant inner product (· , ·)n for T dn is

(ψ̃, ϕ̃)n = cn〈Anψ, ϕ〉S, cn = a(n, n+ 1)−1. (2.8)

3. Poisson and Fourier transforms

First we determine distributions θ in D′(S) invariant with respect to the subgroup H

under the representations Tσ. We shall use the following notation for a character of the
group R∗ :

tλ,m = |t|λ(sgn t)m,

where t ∈ R∗ = R\{0}, λ ∈ C, m ∈ Z. In fact this character depends only on m modulo 2.
Here and further the sign “ ≡ ” means the congruence modulo 2.

It is easy to check that the distribution

θσ,ε = sσ,ε3 = [x0, s]σ,ε,

where σ ∈ C, ε = 0, 1, is H -invariant. Sometimes we write an integer instead of ε with the
same parity as ε. As a function of σ, θσ,ε is a meromorphic function — with simple poles at
points σ ∈ −1−ε−2N. Its residue at σ = −n−1, n ≡ ε, is the distribution const ·δ(n)(s3)
concentrated at two points s = (1,±1, 0). Here δ(t) is the Dirac delta function on the real
line (a linear continuous functional on D(R) ). The space of H -invariants has dimension 2
for σ 6= −n − 1, n ∈ N, and dimension 3 for σ = −n − 1. Every irreducible subfactor for
Tσ, σ ∈ Z, contains, up to a factor, precisely one H -invariant. In particular, θ−n−1,n+1 and
θn,n+1 have non-zero projections into V ′−n−1,± and D′(S)/V ′n,∓ respectively.

The operator Aσ carries θσ,ε to θ−σ−1,ε with a factor:

Aσθσ,ε = j(σ, ε)θ−σ−1,ε, (3.1)

where

j(σ, ε) = 2−σπ−1/2Γ

(
−σ − 1

2

)
Γ(σ + 1) [1− (−1)ε cosσπ] . (3.2)

It is easy to check that
j(σ, ε)j(−σ − 1, ε) = (8πω(σ))−1,

where ω(σ) is given by (2.7) or (5.2). The factor j(σ, ε) has simple poles at σ ∈ −1/2 +N.
By a general scheme [3], the H -invariant θσ,ε gives rise to the Poisson kernel Pσ,ε(x, s) =

[x, s]σ,ε, x ∈ X , s ∈ S. This kernel gives rise to two transforms. The first of them, the
Poisson transform Pσ,ε : D(S)→ C∞(X ) is a linear continuous operator defined as follows:

(Pσ,εϕ)(x) =

∫
S

[x, s]σ,εϕ(s)ds.
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It intertwines T−σ−1 with UX , therefore, its image consists of eigenfunctions of the Laplace–
Beltrami operator:

∆X ◦ Pσ,ε = σ(σ + 1)Pσ,ε

of parity ε (see (2.1) and (1.4)). As a function in σ, the Poisson transform behaves like
θσ,ε : it depends on σ meromorphically and has simple poles at σ ∈ −1− ε− 2N.

Formula (3.1) gives
Pσ,εAσ = j(σ, ε)P−σ−1,ε. (3.3)

Consider σ ∈ Z. The transform P−n−1,n+1 vanishes on En, it generates an operator
on D(S)/En which intertwines T dn with UX . The Poisson transform Pn,n+1 considered on
V d
−n−1 intertwines T d−n−1 with UX . By (3.3), Pn,n+1 has the same image as P−n−1,n+1.

The second transform generated by the Poisson kernel is the Fourier transform Fσ,ε :

D(X )→ D(S) defined by

(Fσ,εf) (s) =

∫
X

[x, s]σ,εf(x)dx.

It is meromorphic in σ with simple poles at points σ ∈ −1 − ε − 2N. It intertwines UX
with Tσ. It follows from (3.1) that

AσFσ,ε = j(σ, ε)F−σ−1,ε. (3.4)

For a function f ∈ D(X ), let us call two functions Fσ,εf, ε = 0, 1, the Fourier components
of f corresponding to the representation Tσ.

The Fourier and Poisson transforms are conjugate to each other with respect to forms
(1.3) and (2.2):

〈Pσ,εϕ, f〉X = 〈ϕ, Fσ,εf〉S.

This relation allows to extend the Poisson transform to distributions on S.

Consider the reducible case. The Fourier transform Fn corresponding to T dn is defined
as the map of D(X ) to D(S)/En which assigns to f ∈ D(X ) the corresponding coset of
the function Fn,n+1f. By (2.8) and (3.4) we have

(Fnf, Fnh)n = dn〈F−n−1,n+1f, Fn,n+1h〉S, dn = 2n!2/π(2n+ 1)!.

The Fourier transform corresponding to T d−n−1 is F−n−1,n+1.

The representation Tσ has one up to a factor K -invariant, it is the function τσ equal
to 1 identically on S :

τσ(s) = [y0, s]σ = 1.

The representations of the discrete series have no K -invariants.
The corresponding Poisson transform Qσ : D(S) → C∞(Y) and Fourier transform

D(Y)→ D(S) are defined by

(Qσϕ)(y) =

∫
S

[−y, s]σϕ(s)ds,

(Gσh) (s) =

∫
Y

[−y, s]σh(y)dy.
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Notice that [−y, s] > 0 for all y ∈ Y and s ∈ S.
The Poisson transform Qσ intertwines T−σ−1 with UY , therefore, its image consists of

eigenfunctions of the Laplace–Beltrami operator:

∆Y ◦Qσ,ε = σ(σ + 1)Qσ,ε. (3.5)

4. Spherical functions

Let σ ∈ C, ε = 0, 1. Let us define a spherical function Ψσ,ε on the hyperboloid Y as
follows

Ψσ,ε(y) = 〈Tσ(g)θσ,ε, τ−σ−1〉S (4.1)
= 〈θσ,ε, T−σ−1(g−1)τ−σ−1〉S

=

∫
S

θσ,ε[−y, s]−σ−1ds, (4.2)

where g ∈ G is such that y0g = y. As the distribution θσ,ε does, the spherical function
Ψσ,ε is given by an integral absolutely convergent for Reσ > −1 and can be continued
analytically in σ to a meromorphic function. It has poles where θσ,ε has and of the same
(the first) order.

The function Ψσ,ε(y) is a function of class C∞ on Y invariant with respect to H :

Ψσ,ε(yh) = Ψσ,ε(y), h ∈ H.

Therefore, it depends on y3 = [x0, y] only:

Ψσ,ε(y) = Φσ,ε(y3), (4.3)

where Φσ,ε(c) is a function in C∞(R ).

Lemma 4.1. The function Φσ,ε has the following integral representation:

Φσ,ε(c) =

∫ 2π

0

(
c+
√
c2 + 1 · cosα

)σ,ε
dα. (4.4)

P r o o f. Let us take in (4.1) as g the matrix a = exp t L2, see (1.1), in A :

a =

 cosh t 0 sinh t

0 1 0

sinh t 0 cosh t

 .

We have
(Tσ(a) θσ,ε) (s) = [x0, sa]σ,ε = (sinh t+ s3 cosh t)σ,ε .

By (4.1), the value of Ψσ,ε at the point y0a = (cosh t, 0, sinh t) is just (4.4) with c = sinh t.

�

It follows from (4.4) that the function Φσ,ε has parity ε :

Φσ,ε(−c) = (−1)εΦσ,ε(c).
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Equality (4.2) shows that the spherical function Ψσ,ε is the Poisson transform of the
H -invariant:

Ψσ,ε = Q−σ−1θσ,ε. (4.5)

Consider Ψσ,ε as a distribution on Y :

〈Ψσ,ε, f〉Y =

∫
Y

Ψσ,ε(y)f(y)dy, (4.6)

where f ∈ D(Y). The right hand side in (4.6) can be rewritten as an iterated integral, then
we obtain:

〈Ψσ,ε, f〉Y =

∫ ∞
−∞

Φσ,ε(c)(Mf)(c)dc, (4.7)

where
(Mf)(c) =

∫
Y
δ(y3 − c)f(y)dy,

The map M assigns to a function f its integrals over H -orbits. It is a continuous operator
from D(Y) onto D(R).

Lemma 4.2. The value (4.6) is expressed in terms of Fourier components:

〈Ψσ,ε, f〉Y = 〈θσ,ε, G−σ−1f〉S. (4.8)

P r o o f. Let h(y) be a majorant of the function f(y), depending on y1 only. Then for
Reσ > −1 the right hand side in (4.8) is majorized by the integral∫ 2π

0

| cosα|τdα
∫
Y

∣∣∣[y, s]∣∣∣−τ−1h(y)dy, (4.9)

where τ = Reσ. In fact, the integral over Y here does not depend on s. Therefore, integral
(4.9) converges absolutely and the order of integration can be inverted. So we get equality
(4.8) for Reσ > −1. To other σ this equality is extended by analycity. �

Let Φ be a distribution on Y invariant with respect to H. Assign to it two things: a
convolution with Φ of functions f in D(Y) and a sesqui-linear functional K on the pair
(D(X ), D(Y) ). The convolution Φ ? f is the following function on X :

(Φ ? f)(x) = 〈Φ, UY(g)f〉Y

=

∫
Y

Φ(y)f(yg)dy,

the functional is:

K(Φ|h, f) = 〈h,Φ ? f〉X

=

∫
X
h(x)〈Φ, UY(g)f〉Y dx

=

∫
X×Y

Φ(yg−1)h(x)f(y)dx dy,
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where h ∈ D(X ), f ∈ D(Y) and g is an arbitrary element in G carrying x0 to x.

Since Φ is H -invariant, these formulae do not depend on the choice of g for given x. The
convolution is a linear map D(Y)→ C∞(X ), intertwining UY and UX :

Φ ? (UY(g)f) = UX (g) (Φ ? f) .

For the spherical function Ψσ,ε, the convolution and the functional are expressed in terms
of the Poisson and Fourier transforms:

(Ψσ,ε ? f) (x) = (Pσ,εG−σ−1f) (x),

K(Ψσ,ε|h, f) = 〈Fσ,εh,G−σ−1f〉S. (4.10)

The kernel Kσ,ε(x, y) of the functional (4.10) is

Kσ,ε(x, y) =

∫
S

[x, s]σ,ε[−y, s]−σ−1ds.

Lemma 4.3. The function Ψσ,ε has the following property of symmetry in σ :

Ψ−σ−1,ε = −1 + (−1)ε cosσπ

sinσπ
·Ψσ,ε. (4.11)

P r o o f. By Lemma 4.2, (3.1), (2.4), (2.5) and Lemma 4.2 again we have:

〈Ψ−σ−1,ε, f〉Y = 〈θ−σ−1,ε, Gσf〉S
= j(σ, ε)−1〈Aσθσ,ε, Gσf〉S
= j(σ, ε)−1〈θσ,ε, AσGσf〉S
= a(σ, 0)j(σ, ε)−1〈θσ,ε, G−σ−1f〉S
= a(σ, 0)j(σ, ε)−1〈Ψσ,ε, f〉Y .

Substituting here values of a(σ, 0) and j(σ, ε) from (2.6) and (3.2), we get (4.11). �

Lemma 4.4. The spherical function Ψσ,ε is an eigenfunction of the Laplace–Beltrami
operator:

∆YΨσ,ε = σ(σ + 1)Ψσ,ε. (4.12)

P r o o f. The function Ψσ,ε is the Poisson transform of the function θσ,ε, see (4.5).
It remains to remember (3.5). �

On functions depending on y3 = c only, the operator ∆Y becomes to the following
differential operator (the H -radial part of ∆Y ):

L = (c2 + 1)
∂2

∂c2
+ 2c

∂

∂c
. (4.13)

Lemma 4.5. The function Φσ,ε, see (4.3) and (4.4), is an eigenfunction of L :

LΦσ,ε = σ(σ + 1)Φσ,ε.
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The lemma follows immediately from Lemma 4.4.

Theorem 4.1. The spherical function Ψσ,ε(y) is expressed in terms of the Legendre
functions Pσ (see [2, Ch. III]) of the imaginary argument:

Ψσ,ε(y) =
2π

eiσπ/2 + (−1)εe−iσπ/2

{
Pσ(iy3) + (−1)εPσ(−iy3)

}
. (4.14)

P r o o f. Denote for brevity:
Pσ(it) = Bσ(t), (4.15)

also for a function ϕ(t) on R we shall denote

ϕ̂(t) = ϕ(−t).

Equality (4.14) is equivalent to the following expression of the function Φσ,ε :

Φσ,ε(c) =
2π

eiσπ/2 + (−1)εe−iσπ/2

{
Bσ(c) + (−1)εB̂σ(c)

}
. (4.16)

So we have to prove (4.16).
The Legendre function Pσ(z) is analytic in the z -plane with the cut (−∞,−1], satisfies

the equation: (
(z2 − 1)

∂2

∂z2
+ 2z

∂

∂z

)
w = σ(σ + 1)w (4.17)

and has the integral representation

Pσ(z) =
1

2π

∫ 2π

0

(
z +
√
z2 − 1 cosα

)σ
dα. (4.18)

Let σ be not integer. Then the functions Pσ(z) and P̂σ(z) form a basis of solutions of
equation (4.17). For z = ic equation (4.17) becomes the equation:

Lw = σ(σ + 1)w.

In virtue of Lemma 4.5 the function Φσ,ε is a linear combination of functions Bσ and
B̂σ. Coefficients of this linear combination could be found out by computing values of
functions Φσ,ε, Bσ and B̂σ and their derivatives at the point c = 0, using (4.6) and
explicit expressions [2, 3.4(20),(23)]. But it is more convenient for us to find them in another
way.

Let z tend to ic, c ∈ R, in (4.18) such that Re z > 0. We get:

Bσ(c) =
1

2π
eiσπ/2

∫ 2π

0

(
c+
√
c2 + 1 cosα− i0

)σ
dα. (4.19)

Denote

Zσ(c) =

∫ 2π

0

(
c+
√
c2 + 1 cosα− i0

)σ
+
dα.

Then

Ẑσ(c) =

∫ 2π

0

(
c+
√
c2 + 1 cosα− i0

)σ
−
dα.
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Applying to (4.19) the formula:

(t− i0)σ = tσ+ + e−iσπtσ−,

we obtain
Bσ =

1

2π

[
eiσπ/2Zσ + e−iσπ/2Ẑσ

]
, (4.20)

whence
B̂σ =

1

2π

[
e−iσπ/2Zσ + eiσπ/2Ẑσ

]
. (4.21)

From (4.20) and (4.21) we have

Zσ =
π

i sinσπ

[
eiσπ/2Bσ − e−iσπ/2B̂σ

]
, (4.22)

Ẑσ =
π

i sinσπ

[
− e−iσπ/2Bσ + eiσπ/2B̂σ

]
. (4.23)

Since
Φσ,ε = Zσ + (−1)εẐσ.

we obtain (4.16) by (4.22) and (4.22). �

Let us establish some estimates for spherical functions of the continuous series
(σ = −1/2 + iρ ). They show that values of these spherical functions at f decrease rapidly
when their parameter ρ tends to infinity.

Theorem 4.2. Let σ = −1/2 + iρ, ρ ∈ R. For any compact set W ⊂ Y , there exists a
number C > 0 such that for any f ∈ D(Y) with the support in W the following estimate
holds:

|〈Ψσ,ε, f〉Y | 6 C ·max
y

∣∣(∆m
Y f
)

(y)
∣∣ (ρ2 + 1/4)−m, m ∈ N. (4.24)

P r o o f. Take h ∈ D(Y) depending on y1 only, such that h(y) > 0, h(y) = 1 on W.

Then µh, where µ = max |f(y)|, is a majorant for f depending on y1 only. Arguing as in
the proof of Lemma 4.2, we obtain

|〈Ψσ,ε, f〉Y | 6 Cµ, (4.25)

where C is the number

C =

∫ 2π

0

| cosα|−1/2dα
∫
Y

[−y, s]−1/2h(y) dy.

Now apply the estimate (4.25) to the function ∆m
Y f, m ∈ N, transfer the operator ∆Y to

the function Ψσ,ε, since it is self-adjoint, and use (4.12). Since |σ(σ + 1)| = ρ2 + 1/4 for
σ = −1/2 + iρ, we get (4.24). �

Let us write expressions of Ψσ,ε for σ integer. In the notation Ψσ,ε sometimes it is
convenient to write an integer instead of ε with the same parity as ε.
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Let n ∈ N. Let first σ = n. For Ψn,n+1 we have to evaluate an indeterminacy in (4.14).
We have

Ψn,n(y) = 2πi−nPn(iy3),

Ψn,n+1 = −4i1−nQ∗n(iy3),

where Pn(z) is the Legendre polynomial and Q∗n(z) is the Legendre function which differs
from the Legendre function of the second kind Qn(z) by the cut on the z -plane: for Qn(z)

one takes the cut [−1, 1], but for Q∗n(z) one has to take the cut (−∞,−1]∪[1,∞) ; therefore,
we have:

Q∗n(z) =
1

2
Pn(z) ln

1 + z

1− z
−Wn−1(z),

cf. [2, 3.6(24)], where the principal branch of the logarithm is taken and Wn−1(z) is a
polynomial of degree n− 1 indicated in [2, 3.6.2].

For σ = −n − 1 we use the relation (4.11). For ε ≡ n the function Ψσ,ε has a pole at
σ = −n− 1 because of θσ,ε. We have

Ψ−n−1,n+1 = 0,

Resσ=−n−1 Ψσ,n = (−1)n+1 (2/π) Ψn,n.

5. Eigenfunction decomposition of the radial part
of the Laplace-Beltrami operator

In this Section we obtain the eigenfunction decomposition of the operator (see (4.13))

L = (c2 + 1)
∂2

∂c2
+ 2c

∂

∂c

defined on the real line R. We use the function Φσ,ε(c), see (4.3) and (4.4). Recall that it
has parity ε and satisfies the equation:

Lw = σ(σ + 1)w.

Let us denote by (ϕ, ψ) the L2(R) inner product of functions ϕ, ψ :

(ϕ, ψ) =

∫ ∞
−∞

ϕ(c)ψ(c) dc.

Theorem 5.1. There is the following eigenfunction decomposition of the operator L :

(ϕ, ψ) =

∫ ∞
−∞

ω(σ)
∑
ε

(ϕ,Φσ,ε)(Φσ,ε, ψ)
∣∣∣
σ=−1/2+iρ

dρ, (5.1)

where

ω(σ) =
1

32π2
(2σ + 1) cotσπ (5.2)

so that
ω

(
−1

2
+ iρ

)
=

1

16π2
ρ tanh ρπ.
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P r o o f. Let us write the resolvent Rλ = (λE−L)−1 of the operator L. Let h ∈ L2(R)

and Rλh = f, then h = (λE − L)f, so that

Lf − λf = −h. (5.3)

Let us take λ in the form λ = σ(σ + 1). The correspondence σ 7→ λ maps the half plane
Reσ > −1/2 onto the λ -plane with the cut (−∞,−1/4 ] one-to-one.

Let f1, f2 be eigenfunctions of the operator L with the eigenvalue λ = σ(σ + 1) with
Reσ > −1/2. They behave at infinity (±∞ ) as A|c|σ + B|c|−σ−1. Let us take them such
that they are square integrable at +∞ and −∞ respectively. Then for c→ +∞ :

f1(c) ∼ B1c
−σ−1,

f2(c) ∼ A2c
σ +B2c

−σ−1,

and for c→ −∞ :

f1(c) ∼ C1|c|σ +D1|c|−σ−1,
f2(c) ∼ D2|c|−σ−1.

The wronskian W of these functions is

W =
W0

c2 + 1
, W0 = (2c+ 1)B1A2.

We have already several eigenfunctions: Pσ(ic), Pσ(−ic), Zσ(c), Ẑσ(c), Φσ,ε(c), ε = 0, 1.

By [2, 3.2(18)] the Legendre functions behave when c→ +∞ as follows:

Pσ(ic) ∼ p(σ) · eiσπ/2 · cσ + p(−σ − 1) · ei(−σ−1)π/2 · c−σ−1,
Pσ(−ic) ∼ p(σ) · e−iσπ/2 · cσ + p(−σ − 1) · ei(σ+1)π/2 · c−σ−1,

where
p(σ) = 2σπ−1B

(
σ +

1

2
,

1

2

)
,

B(a, b) being the Euler beta function.
By (4.22), (4.22) it gives that when c→ +∞ we have

Zσ(c) ∼ 2π · p(σ) · cσ − 2π

sinσπ
· p(−σ − 1) · c−σ−1,

Ẑσ(c) ∼ 2π · cotσπ · p(−σ − 1) · c−σ−1.

Therefore, as a mentioned-above basis f1, f2 of solutions of the equation Lw = λw,

λ = σ(σ + 1), we can take the pair Ẑσ, Zσ. Then

W0 = (2σ + 1) · 2πp(σ) · 2π cotσπ · p(−σ − 1)

= 4π.

Therefore, the solution f of equation (5.3) is

f(c) =
1

4π

{
Ẑσ(c)

∫ c

−∞
Zσ(t)h(t)dt+ Zσ(c)

∫ ∞
c

Ẑσ(t)h(t)dt
}
.
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Thus, for Imλ 6= 0, the resolvent Rλ is an integral operator with the kernel

Kλ(c, t) =

{
(1/4π)Ẑσ(c)Zσ(t), c > t,

(1/4π)Zσ(c)Ẑσ(t), c < t,
(5.4)

here λ = σ(σ + 1) and σ belongs to the half plane Reσ > −1/2 with the cut along the
real axis.

Let ϕ, ψ ∈ L2(R). By the Titchmarsh–Kodaira theorem [1, XIII] we have

(ϕ, ψ) = lim
ε→+0

1

2πi

[∫ ∞
−∞

(Rλ−iεϕ, ψ) dλ−
∫ ∞
−∞

(Rλ+iεϕ, ψ) dλ

]
.

Let us pass to σ. Then dλ = (2σ + 1)dσ and we denote Sσ = Rλ. The operator function
Sσ is analytic in the half plane Reσ > −1/2. Therefore,

(ϕ, ψ) =
1

2π

∫ ∞
−∞

(2σ + 1)(Sσϕ, ψ)
∣∣∣
σ=−1/2+iρ

dρ.

We can keep here only the even part in ρ of the integrand:

(ϕ, ψ) =
1

4π

∫ ∞
−∞

(2σ + 1) ((Sσ − S−σ−1)ϕ, ψ)
∣∣∣
σ=−1/2+iρ

dρ.

Let us compute the kernel Mσ(c, t) of the operator Sσ − S−σ−1. Let c > t. By (5.4) we
have

Mσ(c, t) =
1

4π

{
Ẑσ(c)Zσ(t)− Ẑ−σ−1(c)Z−σ−1(t)

}
Let us insert here (4.22) and (4.22) and use that the Legendre function Pσ is unchanged
under σ 7→ −σ − 1. We obtain (recall notation (4.15)):

Mσ(c, t) = − π cosσπ

2 sin2 σπ

{
Bσ(c)B̂σ(t) + B̂σ(c)Bσ(t)

}
. (5.5)

For c < t, we obtain the same expression.
Further, if σ = −1/2 + iρ, then for the Legendre function Pσ on the imaginary axis we

have
Pσ(ic) = Pσ(−ic) = P−σ−1(−ic) = Pσ(−ic),

or, in terms of Bσ :
Bσ(c) = B̂σ(c) = B̂−σ−1(c) = B̂σ(c).

Therefore, equality (5.5) gives

(ϕ, ψ) = −
∫ ∞
−∞

(2σ + 1) cosσπ

8 sin2 σπ

{
(ϕ,Bσ)(Bσ, ψ)

+ (ϕ, B̂σ)(B̂σ, ψ)
}∣∣∣

σ=−1/2+iρ
dρ. (5.6)

This formula is the desired eigenfunction decomposition – in the basis Bσ, B̂σ.

Now let us pass in (5.6) from Bσ, B̂σ to Φσ,ε, ε = 0, 1, by

Bσ =
1

2π

(
cos

σπ

2
· Φσ,0 + i sin

σπ

2
· Φσ,1

)
,

B̂σ =
1

2π

(
cos

σπ

2
· Φσ,0 + i sin

σπ

2
· Φσ,1

)
,

then we obtain (5.1). �
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6. Decomposition of a sesqui-linear form on the pair of hyperboloids

Let us consider the following sesqui-linear form A(h, f) defined on the pair (D(X ),

D(Y) :

A(h, f) =

∫
X×Y

δ([x, y])h(x)f(y)dxdy.

The main result of our work consists of Theorem 6.1, which gives the decomposition of this
form in terms of Fourier components of functions h and f. The decomposition contains
Fourier components of the continuous series (σ = −1/2 + iρ ).

Theorem 6.1. The sesqui-linear form A(h, f) decomposes into Fourier components of
the continuous series Fσ,0f and Gσh, σ = −1/2 + iρ, ρ ∈ R, as follows:

A(h, f) =

∫ ∞
−∞

µ(σ)〈Fσ,0h,Gσf〉S
∣∣∣
σ=−1/2+iρ

dρ, (6.1)

where

µ(σ) = 2ω(σ)B

(
−σ

2
,

1

2

)
(6.2)

=
1

16π2
(2σ + 1) cotσπ · B

(
−σ

2
,

1

2

)
, (6.3)

the factor ω(σ) is given by (5.2), so that

µ

(
−1

2
+ iρ

)
=

1

8
π−5/2ρ tanh ρπ · sin

(
1

4
+
iρ

2

)
π ·
∣∣∣Γ(1

4
+
iρ

2

) ∣∣∣2
P r o o f. Let us take in (5.1) as ϕ the characteristic function of the interval [0, a] divided

by a and as ψ the function Mf, f ∈ D(Y). We can consider that a ∈ [0, 1]. We obtain

1

a

∫ a

0

Mf(c) dc =
∑
ε

∫ ∞
−∞

Ωε(ρ)
[ 1

a

∫ a

0

Φ−1/2+iρ,ε(c)dc
]
dρ, (6.4)

where we denoted

Ωε(ρ) = ω(σ) (Φσ,ε,Mf)
∣∣∣
σ=−1/2+iρ

= 〈Ψσ,ε, f〉Y
∣∣∣
σ=−1/2+iρ

,

see (4.7). Let a tend to 0. Then the left hand side of (6.4) goes to Mf(0). Let us prove
that we can pass to the limit under the integral over ρ in the right hand side of (6.4). By
the mean value theorem, the integral in the right hand side of (6.4) is equal to

Fε(a) =

∫ ∞
−∞

Ωε(ρ)Φ−1/2+iρ,ε(η)dρ, (6.5)

where η is a number in [ 0, a ] (depending on a, ρ and ε ). We have to prove that

Fε(a)→ Fε(0) (6.6)
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when a→ 0, where

Fε(0) =

∫ ∞
−∞

Ωε(ρ)Φ−1/2+iρ,ε(0)dρ. (6.7)

Let us take an arbitrary number γ > 0. In virtue of Theorem 4.2 both functions Ωε(ρ),

ε = 0, 1, decrease rapidly when |ρ| → 0. Therefore, there exists a number A such that∫
|ρ|>A

∣∣∣Ωε(ρ)
∣∣∣dρ < γ. (6.8)

It follows from formula (4.4) that the function Φ−1/2+iρ,ε(c) is bounded, i. e.∣∣∣Φ−1/2+iρ,ε(c)∣∣∣ 6 N, (6.9)

N being some number, for all ρ ∈ R, ε = 0, 1, and all c from some finite interval, for
example, [0, 1]. Indeed, formula (4.4) implies the inequality∣∣∣Φσ,ε(c)

∣∣∣ 6 ∫ 2π

0

∣∣∣c+
√
c2 + 1 · cosα

∣∣∣−1/2 dα (6.10)

since the function of c in the right hand side of (6.10) (it is the function Φ−1/2,0 ) is
continuous with respect to c.

On the other hand, since the function Φ−1/2+iρ,ε(c) is continuous with respect to ρ and
c, there exists a number δ > 0 such that∣∣∣Φ−1/2+iρ,ε(η)− Φ−1/2+iρ,ε(0)

∣∣∣ < γ (6.11)

for |ρ| 6 A and 0 6 η < δ. Then for 0 < a < δ we have∣∣∣Fε(a)− Fε(0)
∣∣∣ 6 ∫ ∞

−∞

∣∣∣Ωε(ρ)
∣∣∣ · ∣∣∣Φ−1/2+iρ,ε(η)− Φ−1/2+iρ,ε(0)

∣∣∣dρ
=

∫ A

−A
+

∫
|ρ|>A

6 γ

∫ A

−A

∣∣∣Ωε(ρ)
∣∣∣dρ+ 2N

∫
|ρ|>A

∣∣∣Ωε(ρ)
∣∣∣dρ

6 (Cε + 2N)γ, (6.12)

where
Cε

∫ ∞
−∞

∣∣∣Ωε(ρ)
∣∣∣dρ,

here we used (6.5), (6.7)–(6.9), (6.11). Inequality (6.12) proves (6.6).
Now we may pass to the limit in (6.4) when a→ 0. We obtain

Mf(0) =

∫ ∞
−∞

ω(σ)
∑
ε

Φσ,ε(0) 〈Ψσ,ε, f〉Y
∣∣∣
σ=−1/2+iρ

dρ. (6.13)

By (4.4) we have

Φσ,ε(0) =

∫ 2π

0

(cosϕ)σ,εdϕ

= [ 1 + (−1)ε ] B

(
σ + 1

2
,

1

2

)
.
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We see that Φσ,ε(0) is equal to zero for ε = 1, so that only one summand in (6.13) remains
– with ε = 0. Since

σ = −σ − 1 for σ = −1/2 + iρ, (6.14)

equality (6.13) is

Mf(0) =

∫ ∞
−∞

µ(σ)〈Ψσ,0, f〉Y
∣∣∣
σ=−1/2+iρ

dρ, (6.15)

where µ(σ) is given by (6.3), (6.4).
The left hand side in (6.15) is

Mf(0) =

∫
Y
δ
(
[x0, y ]

)
f(y) dy. (6.16)

Taking into account (6.16) let us apply (6.15) to a shifted function (UY(g)f) (y) = f(yg),

g ∈ G. We get ∫
Y
δ ([x, y ]) f(y)dy =

∫ ∞
−∞

µ(σ)〈Ψσ,0, UY(g)f〉Y
∣∣∣
σ=−1/2+iρ

dρ, (6.17)

where x = x0g.

Now multiply both sides of (6.17) by a function h(x) in D(X ) and integrate over x ∈ X .
In the right hand side we may invert the order of integrations – in virtue of Lemma 6.1, see
below. We obtain:

A(h, f) =

∫ ∞
−∞

µ(σ)

∫
X
〈Ψσ,0, UY(g)f〉Y h(x)dx

∣∣∣
σ=−1/2+iρ

dρ.

The integral over X is nothing but the functional K(Ψσ,0|h, f). Substituting its expression
(4.10) in terms of Fourier components and taking into account (6.14), we get (6.1). �

Lemma 6.1. For any function f(y) in DY the integral in the right hand side of (6.17)
converges absolutely and uniformly with respect to x = x0g on any compact V ⊂ X .

P r o o f. The hyperboloid X can be embedded into the group G as the product AK of
subgroups A and K. By continuity of UY , the union of supports of all functions UY(g)f,

where g = ak is such that x0g ∈ V is some compact W in Y . By Theorem 4.1 there exists
C > 0 such that for any g = ak, x0g ∈ V, the following inequality holds∣∣∣〈Ψσ,ε, UY(g)f〉Y

∣∣∣ 6 C ·max
y

∣∣∣(∆m
YUY(g)f

)
(y)
∣∣∣ · (ρ2 + 1/4)−m.

Since ∆Y commutes with translations, we have

max
y

∣∣∣ (∆m
YUY(g)f

)
(y)
∣∣∣ = max

y

∣∣∣(UY(g)∆m
Y f
)

(y)
∣∣∣ = max

y

∣∣∣∆m
Y f(y)

∣∣∣,
so that there exist numbers Cm, m ∈ N, such that∣∣∣〈Ψσ,ε, UY(g)f〉Y

∣∣∣ 6 Cm · (ρ2 + 1/4)−m,

for all x = x0g ∈ V and all m ∈ N, whence the lemma. �



RADON PROBLEMS FOR HYPERBOLOIDS 449

The quasiregular representation of G = SO0(1, 2) on X contains representations of
the continuous series with multiplicity two and the analytic and antianalytic series with
multiplicity one, and the quasiregular representation of G on Y contains representations of
the continuous series with multiplicity one. Theorem 6.1 gives

Theorem 6.2. The kernel of the Radon transform R consists of functions belonging to
the discrete spectrum and to the odd part of the continuous spectrum on X , its image goes
in C∞(Y). The kernel of the Radon transform R∗ is {0}, its image consists of functions
belonging to the even part of the continuous spectrum X .

References

[1] Н. Данфорд, J. T. Шварц, Линейные операторы. Т. II: Спектральная теория, Мир, М.,
1966; англ. пер.:N. Dunford, J. T. Schwartz, Linear Operators. V. II: Spectral Theory, Wiley-
Interscience, New York, 1988.

[2] Г. Бейтмен, А. Эpдейи, Высшие тpансцендентные функции, М., Наука, 1965; англ.
пер.:A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions I,
McGraw-Hill, New York, 1953.

[3] В.Ф. Молчанов, “Гармонический анализ на однородных пространствах”, Некоммутатив-
ный гармонический анализ – 2, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. на-
правления, 59, ВИНИТИ, М., 1990, 5–144; англ. пер.:V. F. Molchanov, “Harmonic analysis
on homogeneous spaces”, Representation Theory and Noncommutative Harmonic Analysis
II, Encyclopaedia of Mathematical Sciences, 59, ed. A.A. Kirillov, Springer-Verlag Berlin
Heidelberg, Berlin, 1995, 1–135 pp.

[4] V. F. Molchanov, “Harmonic analysis on a pair of hyperboloids”, Вестник Тамбовского уни-
верситета. Серия Естественные и технические науки, 8:1 (2003), 149–150.

[5] Н.Я. Виленкин, Спектральные функции итеория представлений групп, Наука, М.,
1965; англ. пер.:N. J. Vilenkin, Special Functions and the Theory of Group Representations,
Translations Mathematical Monographs, 22, Amer. Math. Soc., Providence, 1988.

Information about the author Информация об авторе

Vladimir F. Molchanov, Doctor of Physics
and Mathematics, Professor of the Functional
Analysis Department. Derzhavin Tambov State
University, Tambov, the Russian Federation.
E-mail: v.molchanov@bk.ru
ORCID: https://orcid.org/0000-0002-4065-2649

Молчанов Владимир Федорович, доктор
физико-математических наук, профессор кафед-
ры функционального анализа. Тамбовский го-
сударственный университет им. Г.Р. Держави-
на, г. Тамбов, Российская Федерация. E-mail:
v.molchanov@bk.ru
ORCID: https://orcid.org/0000-0002-4065-2649

Received 19 September 2019
Reviewed 14 November 2019
Accepted for press 29 November 2019

Поступила в редакцию 19 сентября 2019 г.
Поступила после рецензирования 14 ноября 2019 г.
Принята к публикации 29 ноября 2019 г.


	Hyperboloids
	Representations of the group SO0(1,2)
	Poisson and Fourier transforms
	Spherical functions
	Eigenfunction decomposition of the radial part of the Laplace-Beltrami operator
	Decomposition of a sesqui-linear form on the pair of hyperboloids
	toReferences

