T _{OM} 24, \mathbb{N} 128 2019

 \odot Molchanov V.F., 2019 DOI 10.20310/2686-9667-2019-24-128-432-449 УДК 517.98

Radon problems for hyperboloids Vladimir F. MOLCHANOV

Derzhavin Tambov State University 33 Internatsionalnaya St., Tambov 392000, Russian Federation

Задачи Радона для гиперболоидов Владимир Федорович МОЛЧАНОВ

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина» 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Abstract. We offer a variant of Radon transforms for a pair \mathcal{X} and \mathcal{Y} of hyperboloids in \mathbb{R}^3 defined by $[x, x] = 1$ and $[y, y] = -1, y_1 \geq 1$, respectively, here $[x, y] = -x_1y_1+x_2y_2+x_3y_3$. For a kernel of these transforms we take $\delta([x, y])$, $\delta(t)$ being the Dirac delta function. We obtain two Radon transforms $\mathcal{D}(\mathcal{X}) \to \mathcal{C}^{\infty}(\mathcal{Y})$ and $\mathcal{D}(\mathcal{Y}) \to \mathcal{C}^{\infty}(\mathcal{X})$. We describe kernels and images of these transforms. For that we decompose a sesqui-linear form with the kernel $\delta([x, y])$ into inner products of Fourier components.

Keywords: hyperboloids; Radon transform; distributions; representations; Poisson and Fourier transforms

Acknowledgements: The work is partially supported by the Ministry of Education and Science of the Russian Federation (project no. 3.8515.2017/8.9).

For citation: Molchanov V.F. Zadachi Radona dlya giperboloidov [Radon problems for hyperboloids]. Vestnik rossiyskikh universitetov. Matematika – Russian Universities Reports. Mathematics, 2019, vol. 24, no. 128, pp. 432–449. DOI 10.20310/2686-9667-2019-24-128-432- 449.

Аннотация. Мы предлагаем некоторый вариант преобразований Радона для пары $\mathcal X$ и $\mathcal Y$ гиперболоидов в $\mathbb R^3$, определенных уравнениями $[x, x] = 1$ and $[y, y] = -1, y_1 \geqslant 1$, соответственно, здесь $[x, y] = -x_1y_1+x_2y_2+x_3y_3$. В качестве ядра этих преобразований мы берем $\delta([x, y])$, где $\delta(t)$ – дельта-функция Дирака. Мы получаем два преобразования Радона $\mathcal{D}(\mathcal{X}) \to \mathcal{C}^{\infty}(\mathcal{Y})$ и $\mathcal{D}(\mathcal{Y}) \to \mathcal{C}^{\infty}(\mathcal{X})$. Мы описываем ядра и образы этих преобразований. Для этого мы разлагаем полуторалинейную форму с ядром $\delta([x, y])$ по скалярным произведениям компонент Фурье.

Ключевые слова: гиперболоиды; преобразование Радона; обобщенные функции; представления; преобразования Пуассона и Фурье

Благодарности: Работа выполнена при поддержке Министерства образования и науки РФ (проект № 3.8515.2017/8.9).

Для цитирования: Молчанов В.Ф. Задачи Радона для гиперболоидов // Вестник российских университетов. Математика. 2019. Т. 24. № 128. С. 432–449. DOI 10.20310/2686- 9667-2019-24-128-432-449. (In Engl., Abstr. in Russian)

In this paper we offer a variant of Radon transforms for a pair of dual hyperboloids in \mathbb{R}^3 : the one-sheeted hyperboloid $\mathcal{X} : [x, x] = 1$ $([x, y] = -x_1y_1+x_2y_2+x_3y_3)$ and the upper sheet of the two-sheeted hyperboloid \mathcal{Y} : $[y, y] = -1, y_1 \geq 1$ (the Lobachevsky plane). For a kernel of these transforms we take $\delta([x, y])$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$, $\delta(t)$ being the Dirac delta function. This kernel gives two Radon transforms $R: \mathcal{D}(\mathcal{X}) \to \mathcal{C}^{\infty}(\mathcal{Y})$ and $R^*: \mathcal{D}(\mathcal{Y}) \to \mathcal{C}^{\infty}(\mathcal{X})$. We describe kernels and images of these transforms. For that we consider a sesqui-linear form with the kernel $\delta([x, y])$ and write the decomposition of this form into inner products of Fourier components. Results of this paper were announced in [\[4\]](#page-17-0).

1. Hyperboloids

Let G be the group $SO_0(1,2)$, it is a connected group of linear transformations of \mathbb{R}^3 , preserving the form

$$
[x, y] = -x_1y_1 + x_2y_2 + x_3y_3.
$$

We consider that G acts on \mathbb{R}^3 from the right. In accordance with this we write vectors in the row form.

Let us take the following basis of the Lie algebra $\mathfrak g$ of the group G :

$$
L_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, L_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, L_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
$$
 (1.1)

The Casimir element in the universal enveloping algebra of $\mathfrak g$ is $(1/2)\Delta_{\mathfrak g}$, where

$$
\Delta_{\mathfrak{g}} = -L_0^2 + L_1^2 + L_2^2. \tag{1.2}
$$

Consider subgroups K, H, A of the group G generating by elements L_0 , L_1 , L_2 , respectively. The subgroup K is a maximal compact subgroup of G .

Denote by $\mathcal X$ the one-sheeted hyperboloid $[x, x] = 1$, and by $\mathcal Y$ the upper sheet of the two-sheeted hyperboloid $[y, y] = -1$, $y_1 \ge 1$ (we consider that the x_1 -axis goes up). These hyperboloids $\mathcal X$ and $\mathcal Y$ are homogeneous spaces of the group G with respect to translations $x \mapsto xg$, namely, $\mathcal{X} = G/H$ and $\mathcal{Y} = G/K$. The subgroups H and K are stabilizers of points $x^0 = (0, 0, 1) \in \mathcal{X}$ and $y^0 = (1, 0, 0) \in \mathcal{Y}$ respectively.

These hyperboloids have a G -invariant metric. It gives rise to the measures dx and dy and the Laplace–Beltrami operators $\Delta_{\mathcal{X}}$ and $\Delta_{\mathcal{Y}}$ respectively (all are G-invariant).

As local coordinates on the hyperboloids we can take any two variables from x_1, x_2, x_3 . For $\mathcal Y$ it is natural to take y_2, y_3 . Then we have

$$
dx = |x_1|^{-1} dx_2 dx_3, dy = y_1^{-1} dy_2 dy_3,
$$

\n
$$
\Delta x = \frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} + D_1^2 + D_1, D_1 = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2},
$$

\n
$$
\Delta y = \frac{\partial^2}{\partial y_2^2} - \frac{\partial^2}{\partial y_2^2} + D_1^2 + D_1, D_1 = y_2 \frac{\partial}{\partial y_2} + y_3 \frac{\partial}{\partial y_3}.
$$

If M is a manifold, then $\mathcal{D}(M)$ denotes the space of compactly supported infinitely differentiable C-valued functions on M, with the usual topology, and $\mathcal{D}'(M)$ denotes the space of distributions on M – of antilinear continuous functionals on $\mathcal{D}(M)$. For a differentiable representation of a Lie group, we retain the same symbol for the corresponding representations of its Lie algebra and of the universal enveloping algebra.

Let us denote by $U_{\mathcal{X}}$ and $U_{\mathcal{Y}}$ representations of our group G by translations on functions on X and X respectively (quasiregular representations):

$$
(U_{\mathcal{X}}(g)f)(x) = f(xg), \ \ (U_{\mathcal{X}}(g)f)(y) = f(yg).
$$

The representations $U_{\mathcal{X}}$ and $U_{\mathcal{Y}}$ on the spaces $L^2(\mathcal{X}, dx)$ and $L^2(\mathcal{Y}, dy)$ are unitary with respect to the inner products

$$
\langle F, f \rangle_{\mathcal{X}} = \int_{\mathcal{X}} F(x) \overline{f(x)} dx, \ \ \langle F, f \rangle_{\mathcal{Y}} = \int_{\mathcal{Y}} F(y) \overline{f(y)} dy. \tag{1.3}
$$

We have

$$
U_{\mathcal{X}}(\Delta_{\mathfrak{g}}) = \Delta_{\mathcal{X}}, \ U_{\mathcal{Y}}(\Delta_{\mathfrak{g}}) = \Delta_{\mathcal{Y}}.
$$
\n(1.4)

2. Representations of the group $SO₀(1, 2)$

Recall some material about the principal non-unitary series of representations of the group $G = SO_0(1,2)$, see, for example, [\[5\]](#page-17-1). Let C^+ be the cone $[x, x] = 0$, $x_1 > 0$. The group G acts transitively on it. For $\sigma \in \mathcal{C}$, let $\mathcal{D}_{\sigma}(\mathcal{C}^+)$ be the space of C^{∞} functions φ on C^+ homogeneous of degree σ :

$$
\varphi(tx) = t^{\sigma}\varphi(x), \ t > 0.
$$

Let T_{σ} be the representation of G acting on this space by translations:

$$
(T_{\sigma}(g)\varphi)(x) = \varphi(xg).
$$

Take the section S of the cone C^+ by the plane $x_1 = 1$, it is a circle consisting of points $s = (1, \sin \alpha, \cos \alpha)$. The Euclidean measure on S is $ds = d\alpha$. For a function φ on S, sometimes we write $\varphi(\alpha)$ instead of $\varphi(s)$. The representation T_{σ} can be realized on the space $\mathcal{D}(S)$ as follows (index 1 indicates the first coordinate of a vector):

$$
(T_{\sigma}(g)\varphi)(s) = \varphi\left(\frac{sg}{(sg)_1}\right)(sg)_1^{\sigma}.
$$

The element $\Delta_{\mathfrak{g}}$, see [\(1.2\)](#page-1-0), goes to a scalar operator:

$$
T_{\sigma}(\Delta_{\mathfrak{g}}) = \sigma(\sigma + 1)E. \tag{2.1}
$$

The Hermitian form

$$
\langle \psi, \varphi \rangle_S = \int_S \psi(s) \overline{\varphi(s)} ds \tag{2.2}
$$

is invariant with respect to the pair $(T_{\sigma}, T_{-\overline{\sigma}-1})$, i. e.

$$
\langle T_{\sigma}(g)\psi,\varphi\rangle_{S} = \langle \psi,T_{-\overline{\sigma}-1}(g^{-1})\varphi\rangle_{S}.
$$
\n(2.3)

This formula follows from $d\widetilde{s} = (sg)_1^{-1} ds$, where $\widetilde{s} = (sg)/(sg)_1$.

Define an operator A_{σ} in $\mathcal{D}(S)$:

$$
(A_{\sigma}\varphi)(s) = \int_{S} (-[s, u])^{-\sigma - 1} \varphi(u) du.
$$

The integral converges absolutely for $\text{Re}\sigma < -1/2$ and can be continued as a meromorphic function to the whole σ -plane. It has simple poles at $\sigma \in -1/2 + \mathbb{N}$. Here and further $\mathbb{N} = \{0, 1, 2, \ldots\}$. For A_{σ} we have

$$
\langle A_{\sigma}\psi, \varphi \rangle_{S} = \langle \psi, A_{\overline{\sigma}}\varphi \rangle_{S}.
$$
\n(2.4)

The operator A_{σ} intertwines T_{σ} and $T_{-\sigma-1}$, i. e.

$$
T_{-\sigma-1}(g)A_{\sigma} = A_{\sigma}T_{\sigma}(g), \ g \in G.
$$

A sesqui-linear form $\langle A_{\sigma}\psi, \varphi \rangle_S$ is invariant with respect to the pair $(T_{\sigma}, T_{\overline{\sigma}})$. In particular, for $\sigma \in \mathbb{R}$, this form is an invariant Hermitian form for T_{σ} .

Take a basis $\psi_m(\alpha) = e^{im\alpha}$, $m \in \mathbb{Z}$, in $\mathcal{D}(S)$. It consists of eigenfunctions of A_{σ} :

$$
A_{\sigma}\psi_m = a(\sigma, m)\psi_m,\tag{2.5}
$$

where

$$
a(\sigma, m) = 2^{\sigma+2}\pi(-1)^m \frac{\Gamma(-2\sigma - 1)}{\Gamma(-\sigma + m)\Gamma(-\sigma - m)}.
$$
\n(2.6)

The composition $A_{\sigma}A_{-\sigma-1}$ is a scalar operator:

$$
A_{\sigma}A_{-\sigma-1} = \frac{1}{8\pi\omega(\sigma)} \cdot E
$$

where $\omega(\sigma)$ is a "Plancherel measure" (see [\(5.2\)](#page-11-0)):

$$
\omega(\sigma) = \frac{1}{32\pi^2} (2\sigma + 1) \cot \sigma \pi.
$$
\n(2.7)

The representation T_{σ} can be extended to the space $\mathcal{D}'(S)$ of distributions on S by formula [\(2.3\)](#page-2-0) where ψ is a distribution and $\langle \psi, \varphi \rangle_S$ is the value of the distribution ψ at a test function φ . It is an extension in fact, since $\mathcal{D}(S)$ can be embedded into $\mathcal{D}'(S)$ by means of the form [\(2.2\)](#page-2-1), namely, we assign to a function $\psi \in \mathcal{D}(S)$ the functional $\varphi \mapsto \langle \psi, \varphi \rangle_S$ in $\mathcal{D}'(S)$.

Similarly the operator A_{σ} can be extended to the space $\mathcal{D}'(S)$ by means of formula $(2.4).$ $(2.4).$

If σ is not integer, then T_{σ} is irreducible and T_{σ} is equivalent to $T_{-\sigma-1}$ (by A_{σ} or \widehat{A}_{σ}).

Let $\sigma \in \mathbb{Z}$, $n \in \mathbb{N}$. Subspaces $V_{\sigma,+}$ and $V_{\sigma,+}$ spanned by ψ_m for which $m \geq -\sigma$ and $m \leq \sigma$ respectively are invariant. For $\sigma < 0$ they are irreducible and orthogonal to each other. For $\sigma \geq 0$ their intersection E_{σ} is irreducible and has dimension $2\sigma + 1$.

Let $V_n^d = \mathcal{D}(S)/E_n$ and $V_{-n-1}^d = V_{-n-1,+} + V_{-n-1,-}$. Let us denote by T_σ^d , $\sigma \in \mathbb{Z}$, the representation on V^d_σ generated by T_σ . The operator A_n vanishes on E_n and gives rise to the equivalence $T_n^d \sim T_{-n-1}^d$.

There are four series of unitarizable irreducible representations: the *continuous series* consisting of representations T_{σ} with $\sigma = -1/2 + i\rho$, $\rho \in \mathbb{R}$, the inner product is [\(2.2\)](#page-2-1); the complementary series consisting of T_{σ} with $-1 < \sigma < 1$, the inner product is $\langle A_{\sigma}\psi, \varphi \rangle_{S}$ with a factor; the *holomorphic* and *antiholomorphic* series. We need only their sum T^d_{σ} . We shall call T^d_{σ} the representations of *discrete series*. For $\varphi \in \mathcal{D}(S)$, denote by $\widetilde{\varphi}$ the coset of φ readule F . Then the inversion inner preduct (\cdot, \cdot) for T^d is of φ modulo E_n . Then the invariant inner product $(\cdot, \cdot)_n$ for T_n^d is

$$
(\widetilde{\psi}, \widetilde{\varphi})_n = c_n \langle A_n \psi, \varphi \rangle_S, \quad c_n = a(n, n+1)^{-1}.
$$
 (2.8)

3. Poisson and Fourier transforms

First we determine distributions θ in $\mathcal{D}'(S)$ invariant with respect to the subgroup H under the representations T_{σ} . We shall use the following notation for a character of the group \mathbb{R}^* :

$$
t^{\lambda,m} = |t|^{\lambda} (\operatorname{sgn} t)^m,
$$

where $t \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \ \lambda \in \mathbb{C}, \ m \in \mathbb{Z}$. In fact this character depends only on m modulo 2. Here and further the sign " \equiv " means the congruence modulo 2.

It is easy to check that the distribution

$$
\theta_{\sigma,\varepsilon} = s_3^{\sigma,\varepsilon} = [x^0, s]^{\sigma,\varepsilon},
$$

where $\sigma \in \mathbb{C}$, $\varepsilon = 0, 1$, is H-invariant. Sometimes we write an integer instead of ε with the same parity as ε . As a function of σ , $\theta_{\sigma,\varepsilon}$ is a meromorphic function — with simple poles at points $\sigma \in -1-\varepsilon-2\mathbb{N}$. Its residue at $\sigma = -n-1$, $n \equiv \varepsilon$, is the distribution const $\delta^{(n)}(s_3)$ concentrated at two points $s = (1, \pm 1, 0)$. Here $\delta(t)$ is the Dirac delta function on the real line (a linear continuous functional on $\mathcal{D}(\mathbb{R})$). The space of H-invariants has dimension 2 for $\sigma \neq -n-1$, $n \in \mathbb{N}$, and dimension 3 for $\sigma = -n-1$. Every irreducible subfactor for T_{σ} , $\sigma \in \mathbb{Z}$, contains, up to a factor, precisely one H-invariant. In particular, $\theta_{-n-1,n+1}$ and $\theta_{n,n+1}$ have non-zero projections into $V'_{-n-1,\pm}$ and $\mathcal{D}'(S)/V'_{n,\mp}$ respectively.

The operator A_{σ} carries $\theta_{\sigma,\varepsilon}$ to $\theta_{-\sigma-1,\varepsilon}$ with a factor:

$$
A_{\sigma}\theta_{\sigma,\varepsilon} = j(\sigma,\varepsilon)\theta_{-\sigma-1,\varepsilon},\tag{3.1}
$$

where

$$
j(\sigma,\varepsilon) = 2^{-\sigma} \pi^{-1/2} \Gamma\left(-\sigma - \frac{1}{2}\right) \Gamma(\sigma+1) \left[1 - (-1)^{\varepsilon} \cos \sigma \pi\right].
$$
 (3.2)

It is easy to check that

$$
j(\sigma,\varepsilon)j(-\sigma-1,\varepsilon)=(8\pi\omega(\sigma))^{-1},
$$

where $\omega(\sigma)$ is given by [\(2.7\)](#page-3-1) or [\(5.2\)](#page-11-0). The factor $j(\sigma, \varepsilon)$ has simple poles at $\sigma \in -1/2 + \mathbb{N}$.

By a general scheme [\[3\]](#page-17-2), the H-invariant $\theta_{\sigma,\varepsilon}$ gives rise to the Poisson kernel $P_{\sigma,\varepsilon}(x,s)$ = $[x, s]^{\sigma, \varepsilon}, x \in \mathcal{X}, s \in S$. This kernel gives rise to two transforms. The first of them, the Poisson transform $P_{\sigma,\varepsilon} : \mathcal{D}(S) \to C^{\infty}(\mathcal{X})$ is a linear continuous operator defined as follows:

$$
(P_{\sigma,\varepsilon}\varphi)(x) = \int_{S} [x,s]^{\sigma,\varepsilon} \varphi(s) ds.
$$

It intertwines $T_{-\sigma-1}$ with $U_{\mathcal{X}}$, therefore, its image consists of eigenfunctions of the Laplace– Beltrami operator:

$$
\Delta_{\mathcal{X}} \circ P_{\sigma,\varepsilon} = \sigma(\sigma+1)P_{\sigma,\varepsilon}
$$

of parity ε (see [\(2.1\)](#page-2-2) and [\(1.4\)](#page-2-3)). As a function in σ , the Poisson transform behaves like $\theta_{\sigma,\varepsilon}$: it depends on σ meromorphically and has simple poles at $\sigma \in -1 - \varepsilon - 2\mathbb{N}$.

Formula [\(3.1\)](#page-4-0) gives

$$
P_{\sigma,\varepsilon}A_{\sigma} = j(\sigma,\varepsilon)P_{-\sigma-1,\varepsilon}.\tag{3.3}
$$

Consider $\sigma \in \mathbb{Z}$. The transform $P_{-n-1,n+1}$ vanishes on E_n , it generates an operator on $\mathcal{D}(S)/E_n$ which intertwines T_n^d with $U_{\mathcal{X}}$. The Poisson transform $P_{n,n+1}$ considered on V_{-n-1}^d intertwines T_{-n-1}^d with $U_{\mathcal{X}}$. By [\(3.3\)](#page-5-0), $P_{n,n+1}$ has the same image as $P_{-n-1,n+1}$.

The second transform generated by the Poisson kernel is the Fourier transform $F_{\sigma,\varepsilon}$: $\mathcal{D}(\mathcal{X}) \to \mathcal{D}(S)$ defined by

$$
(F_{\sigma,\varepsilon}f)(s) = \int_{\mathcal{X}} [x,s]^{\sigma,\varepsilon} f(x) dx.
$$

It is meromorphic in σ with simple poles at points $\sigma \in -1 - \varepsilon - 2N$. It intertwines $U_{\mathcal{X}}$ with T_{σ} . It follows from [\(3.1\)](#page-4-0) that

$$
A_{\sigma}F_{\sigma,\varepsilon} = j(\sigma,\varepsilon)F_{-\sigma-1,\varepsilon}.\tag{3.4}
$$

For a function $f \in \mathcal{D}(\mathcal{X})$, let us call two functions $F_{\sigma,\varepsilon}f$, $\varepsilon = 0,1$, the Fourier components of f corresponding to the representation T_{σ} .

The Fourier and Poisson transforms are conjugate to each other with respect to forms (1.3) and (2.2) :

$$
\langle P_{\sigma,\varepsilon}\varphi,f\rangle_{\mathcal{X}} = \langle \varphi,F_{\overline{\sigma},\varepsilon}f\rangle_{S}.
$$

This relation allows to extend the Poisson transform to distributions on S.

Consider the reducible case. The Fourier transform F_n corresponding to T_n^d is defined as the map of $\mathcal{D}(\mathcal{X})$ to $\mathcal{D}(S)/E_n$ which assigns to $f \in \mathcal{D}(\mathcal{X})$ the corresponding coset of the function $F_{n,n+1}f$. By (2.8) and (3.4) we have

$$
(F_n f, F_n h)_n = d_n \langle F_{-n-1, n+1} f, F_{n, n+1} h \rangle_S, \quad d_n = 2n!^2 / \pi (2n+1)!.
$$

The Fourier transform corresponding to T_{-n-1}^d is $F_{-n-1,n+1}$.

The representation T_{σ} has one up to a factor K-invariant, it is the function τ_{σ} equal to 1 identically on S :

$$
\tau_{\sigma}(s) = [y^0, s]^{\sigma} = 1.
$$

The representations of the discrete series have no K -invariants.

The corresponding Poisson transform Q_{σ} : $\mathcal{D}(S) \to C^{\infty}(\mathcal{Y})$ and Fourier transform $\mathcal{D}(\mathcal{Y}) \to \mathcal{D}(S)$ are defined by

$$
(Q_{\sigma}\varphi)(y) = \int_{S} [-y, s]^{\sigma} \varphi(s) ds,
$$

$$
(G_{\sigma}h)(s) = \int_{\mathcal{Y}} [-y, s]^{\sigma} h(y) dy.
$$

Notice that $[-y, s] > 0$ for all $y \in \mathcal{Y}$ and $s \in S$.

The Poisson transform Q_{σ} intertwines $T_{-\sigma-1}$ with $U_{\mathcal{Y}}$, therefore, its image consists of eigenfunctions of the Laplace–Beltrami operator:

$$
\Delta_{\mathcal{Y}} \circ Q_{\sigma,\varepsilon} = \sigma(\sigma + 1)Q_{\sigma,\varepsilon}.\tag{3.5}
$$

4. Spherical functions

Let $\sigma \in \mathbb{C}$, $\varepsilon = 0, 1$. Let us define a spherical function $\Psi_{\sigma,\varepsilon}$ on the hyperboloid $\mathcal Y$ as follows

$$
\Psi_{\sigma,\varepsilon}(y) = \langle T_{\sigma}(g)\theta_{\sigma,\varepsilon}, \tau_{-\overline{\sigma}-1} \rangle_{S}
$$
\n
$$
= \langle \theta_{\sigma,\varepsilon}, T_{-\overline{\sigma}-1}(g^{-1})\tau_{-\overline{\sigma}-1} \rangle_{S}
$$
\n(4.1)

$$
= \int_{S} \theta_{\sigma,\varepsilon} [-y,s]^{-\sigma-1} ds, \tag{4.2}
$$

where $g \in G$ is such that $y^0 g = y$. As the distribution $\theta_{\sigma,\varepsilon}$ does, the spherical function $\Psi_{\sigma,\varepsilon}$ is given by an integral absolutely convergent for Re $\sigma > -1$ and can be continued analytically in σ to a meromorphic function. It has poles where $\theta_{\sigma,\varepsilon}$ has and of the same (the first) order.

The function $\Psi_{\sigma,\varepsilon}(y)$ is a function of class C^{∞} on $\mathcal Y$ invariant with respect to H:

$$
\Psi_{\sigma,\varepsilon}(yh) = \Psi_{\sigma,\varepsilon}(y), \ \ h \in H.
$$

Therefore, it depends on $y_3 = [x^0, y]$ only:

$$
\Psi_{\sigma,\varepsilon}(y) = \Phi_{\sigma,\varepsilon}(y_3),\tag{4.3}
$$

where $\Phi_{\sigma,\varepsilon}(c)$ is a function in $C^{\infty}(\mathbb{R})$.

Lemma 4.1. The function $\Phi_{\sigma,\varepsilon}$ has the following integral representation:

$$
\Phi_{\sigma,\varepsilon}(c) = \int_0^{2\pi} \left(c + \sqrt{c^2 + 1} \cdot \cos \alpha \right)^{\sigma,\varepsilon} d\alpha. \tag{4.4}
$$

P r o o f. Let us take in [\(4.1\)](#page-6-0) as g the matrix $a = \exp t L_2$, see [\(1.1\)](#page-1-2), in A:

$$
a = \left(\begin{array}{ccc} \cosh t & 0 & \sinh t \\ 0 & 1 & 0 \\ \sinh t & 0 & \cosh t \end{array}\right).
$$

We have

$$
(T_{\sigma}(a)\,\theta_{\sigma,\varepsilon})\,(s)=[x^0,sa]^{\sigma,\varepsilon}=(\sinh t+s_3\cosh t)^{\sigma,\varepsilon}.
$$

By [\(4.1\)](#page-6-0), the value of $\Psi_{\sigma,\varepsilon}$ at the point $y^0 a = (\cosh t, 0, \sinh t)$ is just [\(4.4\)](#page-6-1) with $c = \sinh t$. \Box

It follows from [\(4.4\)](#page-6-1) that the function $\Phi_{\sigma,\varepsilon}$ has parity ε :

$$
\Phi_{\sigma,\varepsilon}(-c) = (-1)^\varepsilon \Phi_{\sigma,\varepsilon}(c).
$$

Equality [\(4.2\)](#page-6-0) shows that the spherical function $\Psi_{\sigma,\varepsilon}$ is the Poisson transform of the H -invariant:

$$
\Psi_{\sigma,\varepsilon} = Q_{-\sigma-1}\theta_{\sigma,\varepsilon}.\tag{4.5}
$$

Consider $\Psi_{\sigma,\varepsilon}$ as a distribution on \mathcal{Y} :

$$
\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}} = \int_{\mathcal{Y}} \Psi_{\sigma,\varepsilon}(y) \overline{f(y)} dy, \tag{4.6}
$$

where $f \in \mathcal{D}(\mathcal{Y})$. The right hand side in [\(4.6\)](#page-7-0) can be rewritten as an iterated integral, then we obtain:

$$
\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}} = \int_{-\infty}^{\infty} \Phi_{\sigma,\varepsilon}(c) \overline{(Mf)(c)} dc,
$$
\n(4.7)

where

$$
(Mf)(c) = \int_{\mathcal{Y}} \delta(y_3 - c) f(y) dy,
$$

The map M assigns to a function f its integrals over H -orbits. It is a continuous operator from $\mathcal{D}(\mathcal{Y})$ onto $\mathcal{D}(\mathbb{R})$.

Lemma 4.2. The value [\(4.6\)](#page-7-0) is expressed in terms of Fourier components:

$$
\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}} = \langle \theta_{\sigma,\varepsilon}, G_{-\sigma-1} f \rangle_{S}.
$$
\n(4.8)

P r o o f. Let $h(y)$ be a majorant of the function $f(y)$, depending on y_1 only. Then for $\text{Re}\sigma$ > −1 the right hand side in [\(4.8\)](#page-7-1) is majorized by the integral

$$
\int_0^{2\pi} |\cos \alpha|^{\tau} d\alpha \int_{\mathcal{Y}} |[y, s]|^{-\tau - 1} h(y) dy,
$$
\n(4.9)

where $\tau = \text{Re}\sigma$. In fact, the integral over $\mathcal Y$ here does not depend on s. Therefore, integral [\(4.9\)](#page-7-2) converges absolutely and the order of integration can be inverted. So we get equality [\(4.8\)](#page-7-1) for $\text{Re}\sigma$ > −1. To other σ this equality is extended by analycity.

Let Φ be a distribution on $\mathcal Y$ invariant with respect to H. Assign to it two things: a convolution with Φ of functions f in $\mathcal{D}(Y)$ and a sesqui-linear functional K on the pair $(\mathcal{D}(\mathcal{X}), \mathcal{D}(\mathcal{Y}))$. The convolution $\Phi \star f$ is the following function on \mathcal{X} :

$$
(\Phi * f)(x) = \langle \Phi, U_{\mathcal{Y}}(g)\overline{f}\rangle_{\mathcal{Y}}
$$

=
$$
\int_{\mathcal{Y}} \Phi(y)f(yg)dy,
$$

the functional is:

$$
K(\Phi|h, f) = \langle h, \overline{\Phi} \star f \rangle_{\mathcal{X}}
$$

=
$$
\int_{\mathcal{X}} h(x) \langle \Phi, U_{\mathcal{Y}}(g) f \rangle_{\mathcal{Y}} dx
$$

=
$$
\int_{\mathcal{X} \times \mathcal{Y}} \Phi(yg^{-1}) h(x) \overline{f(y)} dx dy,
$$

where $h \in \mathcal{D}(\mathcal{X})$, $f \in \mathcal{D}(\mathcal{Y})$ and g is an arbitrary element in G carrying x^0 to x. Since Φ is H-invariant, these formulae do not depend on the choice of g for given x. The convolution is a linear map $\mathcal{D}(\mathcal{Y}) \to C^{\infty}(\mathcal{X})$, intertwining $U_{\mathcal{Y}}$ and $U_{\mathcal{X}}$:

$$
\Phi \star (U_{\mathcal{Y}}(g)f) = U_{\mathcal{X}}(g) \left(\Phi \star f \right).
$$

For the spherical function $\Psi_{\sigma,\varepsilon}$, the convolution and the functional are expressed in terms of the Poisson and Fourier transforms:

$$
\begin{array}{rcl}\n(\Psi_{\sigma,\varepsilon} \star f)(x) & = & (P_{\sigma,\varepsilon} G_{-\sigma-1} f)(x), \\
K(\Psi_{\sigma,\varepsilon}|h,f) & = & \langle F_{\sigma,\varepsilon} h, G_{-\overline{\sigma}-1} f \rangle_S.\n\end{array} \tag{4.10}
$$

The kernel $K_{\sigma,\varepsilon}(x,y)$ of the functional [\(4.10\)](#page-7-3) is

$$
K_{\sigma,\varepsilon}(x,y) = \int_{S} [x,s]^{\sigma,\varepsilon} [-y,s]^{-\sigma-1} ds.
$$

Lemma 4.3. The function $\Psi_{\sigma,\varepsilon}$ has the following property of symmetry in σ :

$$
\Psi_{-\sigma-1,\varepsilon} = -\frac{1 + (-1)^{\varepsilon} \cos \sigma \pi}{\sin \sigma \pi} \cdot \Psi_{\sigma,\varepsilon}.
$$
\n(4.11)

P r o o f. By Lemma [4.2,](#page-7-4) (3.1) , (2.4) , (2.5) and Lemma [4.2](#page-7-4) again we have:

$$
\langle \Psi_{-\sigma-1,\varepsilon}, f \rangle_{\mathcal{Y}} = \langle \theta_{-\sigma-1,\varepsilon}, G_{\overline{\sigma}} f \rangle_{S}
$$

\n
$$
= j(\sigma, \varepsilon)^{-1} \langle A_{\sigma} \theta_{\sigma,\varepsilon}, G_{\overline{\sigma}} f \rangle_{S}
$$

\n
$$
= j(\sigma, \varepsilon)^{-1} \langle \theta_{\sigma,\varepsilon}, A_{\overline{\sigma}} G_{\overline{\sigma}} f \rangle_{S}
$$

\n
$$
= a(\sigma, 0) j(\sigma, \varepsilon)^{-1} \langle \theta_{\sigma,\varepsilon}, G_{-\overline{\sigma}-1} f \rangle_{S}
$$

\n
$$
= a(\sigma, 0) j(\sigma, \varepsilon)^{-1} \langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}}.
$$

Substituting here values of $a(\sigma,0)$ and $j(\sigma,\varepsilon)$ from [\(2.6\)](#page-3-3) and [\(3.2\)](#page-4-2), we get [\(4.11\)](#page-8-0).

Lemma 4.4. The spherical function $\Psi_{\sigma,\varepsilon}$ is an eigenfunction of the Laplace–Beltrami operator:

$$
\Delta_{\mathcal{Y}} \Psi_{\sigma,\varepsilon} = \sigma(\sigma + 1)\Psi_{\sigma,\varepsilon}.\tag{4.12}
$$

P r o o f. The function $\Psi_{\sigma,\varepsilon}$ is the Poisson transform of the function $\theta_{\sigma,\varepsilon}$, see [\(4.5\)](#page-7-5). It remains to remember (3.5) .

On functions depending on $y_3 = c$ only, the operator Δ_y becomes to the following differential operator (the H-radial part of $\Delta_{\mathcal{V}}$):

$$
L = (c^2 + 1)\frac{\partial^2}{\partial c^2} + 2c\frac{\partial}{\partial c}.
$$
\n(4.13)

Lemma 4.5. The function $\Phi_{\sigma,\varepsilon}$, see [\(4.3\)](#page-6-2) and [\(4.4\)](#page-6-1), is an eigenfunction of L:

$$
L\Phi_{\sigma,\varepsilon} = \sigma(\sigma+1)\Phi_{\sigma,\varepsilon}.
$$

The lemma follows immediately from Lemma [4.4.](#page-8-1)

Theorem 4.1. The spherical function $\Psi_{\sigma,\varepsilon}(y)$ is expressed in terms of the Legendre functions P_{σ} (see [\[2,](#page-17-3) Ch. III]) of the imaginary argument:

$$
\Psi_{\sigma,\varepsilon}(y) = \frac{2\pi}{e^{i\sigma\pi/2} + (-1)^{\varepsilon}e^{-i\sigma\pi/2}} \Big\{ P_{\sigma}(iy_3) + (-1)^{\varepsilon} P_{\sigma}(-iy_3) \Big\}.
$$
\n(4.14)

P r o o f. Denote for brevity:

$$
P_{\sigma}(it) = B_{\sigma}(t),\tag{4.15}
$$

also for a function $\varphi(t)$ on R we shall denote

$$
\widehat{\varphi}(t) = \varphi(-t).
$$

Equality [\(4.14\)](#page-9-0) is equivalent to the following expression of the function $\Phi_{\sigma,\varepsilon}$:

$$
\Phi_{\sigma,\varepsilon}(c) = \frac{2\pi}{e^{i\sigma\pi/2} + (-1)^{\varepsilon}e^{-i\sigma\pi/2}} \left\{ B_{\sigma}(c) + (-1)^{\varepsilon} \widehat{B}_{\sigma}(c) \right\}.
$$
\n(4.16)

So we have to prove (4.16) .

The Legendre function $P_{\sigma}(z)$ is analytic in the z-plane with the cut $(-\infty, -1]$, satisfies the equation:

$$
\left((z^2 - 1) \frac{\partial^2}{\partial z^2} + 2z \frac{\partial}{\partial z} \right) w = \sigma(\sigma + 1)w \tag{4.17}
$$

and has the integral representation

$$
P_{\sigma}(z) = \frac{1}{2\pi} \int_0^{2\pi} \left(z + \sqrt{z^2 - 1} \cos \alpha \right)^{\sigma} d\alpha.
$$
 (4.18)

Let σ be not integer. Then the functions $P_{\sigma}(z)$ and $\widehat{P}_{\sigma}(z)$ form a basis of solutions of equation [\(4.17\)](#page-9-2). For $z = ic$ equation (4.17) becomes the equation:

$$
Lw = \sigma(\sigma + 1)w.
$$

In virtue of Lemma [4.5](#page-8-2) the function $\Phi_{\sigma,\varepsilon}$ is a linear combination of functions B_{σ} and \widehat{B}_{σ} . Coefficients of this linear combination could be found out by computing values of functions $\Phi_{\sigma,\varepsilon}$, B_{σ} and \widehat{B}_{σ} and their derivatives at the point $c = 0$, using [\(4.6\)](#page-7-0) and explicit expressions $[2, 3.4(20), (23)]$ $[2, 3.4(20), (23)]$. But it is more convenient for us to find them in another way.

Let z tend to ic, $c \in \mathbb{R}$, in [\(4.18\)](#page-9-3) such that $\text{Re } z > 0$. We get:

$$
B_{\sigma}(c) = \frac{1}{2\pi} e^{i\sigma\pi/2} \int_0^{2\pi} \left(c + \sqrt{c^2 + 1} \cos \alpha - i0 \right)^{\sigma} d\alpha.
$$
 (4.19)

Denote

$$
Z_{\sigma}(c) = \int_0^{2\pi} \left(c + \sqrt{c^2 + 1} \cos \alpha - i0 \right)_+^{\sigma} d\alpha.
$$

Then

$$
\widehat{Z}_{\sigma}(c) = \int_0^{2\pi} \left(c + \sqrt{c^2 + 1} \cos \alpha - i0 \right) \Big|_{-}^{\sigma} d\alpha.
$$

Applying to [\(4.19\)](#page-9-4) the formula:

$$
(t - i0)^{\sigma} = t_+^{\sigma} + e^{-i\sigma\pi}t_-^{\sigma},
$$

we obtain

$$
B_{\sigma} = \frac{1}{2\pi} \left[e^{i\sigma \pi/2} Z_{\sigma} + e^{-i\sigma \pi/2} \widehat{Z}_{\sigma} \right],
$$
\n(4.20)

whence

$$
\widehat{B}_{\sigma} = \frac{1}{2\pi} \left[e^{-i\sigma\pi/2} Z_{\sigma} + e^{i\sigma\pi/2} \widehat{Z}_{\sigma} \right]. \tag{4.21}
$$

From (4.20) and (4.21) we have

$$
Z_{\sigma} = \frac{\pi}{i \sin \sigma \pi} \left[e^{i \sigma \pi/2} B_{\sigma} - e^{-i \sigma \pi/2} \widehat{B}_{\sigma} \right],
$$
 (4.22)

$$
\widehat{Z}_{\sigma} = \frac{\pi}{i \sin \sigma \pi} \Big[-e^{-i\sigma \pi/2} B_{\sigma} + e^{i\sigma \pi/2} \widehat{B}_{\sigma} \Big]. \tag{4.23}
$$

Since

$$
\Phi_{\sigma,\varepsilon} = Z_{\sigma} + (-1)^{\varepsilon} \widehat{Z}_{\sigma}.
$$

we obtain (4.16) by (4.22) and (4.22) .

Let us establish some estimates for spherical functions of the continuous series $(\sigma = -1/2 + i\rho)$. They show that values of these spherical functions at f decrease rapidly when their parameter ρ tends to infinity.

Theorem 4.2. Let $\sigma = -1/2 + i\rho$, $\rho \in \mathbb{R}$. For any compact set $W \subset \mathcal{Y}$, there exists a number $C > 0$ such that for any $f \in \mathcal{D}(Y)$ with the support in W the following estimate holds:

$$
|\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}}| \leq C \cdot \max_{y} \left| \left(\Delta_{\mathcal{Y}}^{m} f \right) (y) \right| (\rho^{2} + 1/4)^{-m}, \ m \in \mathbb{N}.
$$
 (4.24)

P r o o f. Take $h \in \mathcal{D}(\mathcal{Y})$ depending on y_1 only, such that $h(y) \geq 0$, $h(y) = 1$ on W. Then μh , where $\mu = \max |f(y)|$, is a majorant for f depending on y_1 only. Arguing as in the proof of Lemma [4.2,](#page-7-4) we obtain

$$
|\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}}| \leqslant C\mu,\tag{4.25}
$$

where C is the number

$$
C = \int_0^{2\pi} |\cos \alpha|^{-1/2} d\alpha \int_{\mathcal{Y}} [-y, s]^{-1/2} h(y) dy.
$$

Now apply the estimate [\(4.25\)](#page-10-3) to the function $\Delta_y^m f$, $m \in \mathbb{N}$, transfer the operator Δ_y to the function $\Psi_{\sigma,\varepsilon}$, since it is self-adjoint, and use [\(4.12\)](#page-8-3). Since $|\sigma(\sigma+1)| = \rho^2 + 1/4$ for $\sigma = -1/2 + i\rho$, we get [\(4.24\)](#page-10-4).

Let us write expressions of $\Psi_{\sigma,\varepsilon}$ for σ integer. In the notation $\Psi_{\sigma,\varepsilon}$ sometimes it is convenient to write an integer instead of ε with the same parity as ε .

$$
\Psi_{n,n}(y) = 2\pi i^{-n} P_n(iy_3),
$$

\n
$$
\Psi_{n,n+1} = -4i^{1-n} Q_n^*(iy_3),
$$

where $P_n(z)$ is the Legendre polynomial and $Q_n^*(z)$ is the Legendre function which differs from the Legendre function of the second kind $Q_n(z)$ by the cut on the z-plane: for $Q_n(z)$ one takes the cut $[-1, 1]$, but for $Q_n^*(z)$ one has to take the cut $(-\infty, -1] \cup [1, \infty)$; therefore, we have:

$$
Q_n^*(z) = \frac{1}{2} P_n(z) \ln \frac{1+z}{1-z} - W_{n-1}(z),
$$

cf. [\[2,](#page-17-3) 3.6(24)], where the principal branch of the logarithm is taken and $W_{n-1}(z)$ is a polynomial of degree $n-1$ indicated in [\[2,](#page-17-3) 3.6.2].

For $\sigma = -n-1$ we use the relation [\(4.11\)](#page-8-0). For $\varepsilon \equiv n$ the function $\Psi_{\sigma,\varepsilon}$ has a pole at $\sigma = -n-1$ because of $\theta_{\sigma,\varepsilon}$. We have

$$
\Psi_{-n-1,n+1} = 0,
$$

\n
$$
\operatorname{Res}_{\sigma=-n-1} \Psi_{\sigma,n} = (-1)^{n+1} (2/\pi) \Psi_{n,n}.
$$

5. Eigenfunction decomposition of the radial part of the Laplace-Beltrami operator

In this Section we obtain the eigenfunction decomposition of the operator (see [\(4.13\)](#page-8-4))

$$
L = (c^2 + 1)\frac{\partial^2}{\partial c^2} + 2c\frac{\partial}{\partial c}
$$

defined on the real line R. We use the function $\Phi_{\sigma,\varepsilon}(c)$, see [\(4.3\)](#page-6-2) and [\(4.4\)](#page-6-1). Recall that it has parity ε and satisfies the equation:

$$
Lw = \sigma(\sigma + 1)w.
$$

Let us denote by (φ, ψ) the $L^2(\mathbb{R})$ inner product of functions φ, ψ :

$$
(\varphi, \psi) = \int_{-\infty}^{\infty} \varphi(c) \overline{\psi(c)} \, dc.
$$

Theorem 5.1. There is the following eigenfunction decomposition of the operator L :

$$
(\varphi, \psi) = \int_{-\infty}^{\infty} \omega(\sigma) \sum_{\varepsilon} (\varphi, \Phi_{\sigma, \varepsilon}) (\Phi_{\sigma, \varepsilon}, \psi) \Big|_{\sigma = -1/2 + i\rho} d\rho, \tag{5.1}
$$

where

$$
\omega(\sigma) = \frac{1}{32\pi^2} (2\sigma + 1) \cot \sigma \pi \tag{5.2}
$$

so that

$$
\omega\left(-\frac{1}{2} + i\rho\right) = \frac{1}{16\pi^2} \rho \tanh \rho \pi.
$$

P r o o f. Let us write the resolvent $R_{\lambda} = (\lambda E - L)^{-1}$ of the operator L. Let $h \in L^2(\mathbb{R})$ and $R_{\lambda}h = f$, then $h = (\lambda E - L)f$, so that

$$
Lf - \lambda f = -h. \tag{5.3}
$$

Let us take λ in the form $\lambda = \sigma(\sigma + 1)$. The correspondence $\sigma \mapsto \lambda$ maps the half plane $\text{Re}\sigma$ > $-1/2$ onto the λ -plane with the cut $(-\infty, -1/4]$ one-to-one.

Let f_1 , f_2 be eigenfunctions of the operator L with the eigenvalue $\lambda = \sigma(\sigma + 1)$ with $\text{Re}\sigma > -1/2$. They behave at infinity $(\pm \infty)$ as $A|c|^{\sigma} + B|c|^{-\sigma-1}$. Let us take them such that they are square integrable at $+\infty$ and $-\infty$ respectively. Then for $c \to +\infty$:

$$
f_1(c) \sim B_1 c^{-\sigma - 1},
$$

\n $f_2(c) \sim A_2 c^{\sigma} + B_2 c^{-\sigma - 1},$

and for $c \to -\infty$:

$$
f_1(c) \sim C_1|c|^{\sigma} + D_1|c|^{-\sigma-1},
$$

\n $f_2(c) \sim D_2|c|^{-\sigma-1}.$

The wronskian W of these functions is

$$
W = \frac{W_0}{c^2 + 1}, \quad W_0 = (2c + 1)B_1 A_2.
$$

We have already several eigenfunctions: $P_{\sigma}(ic)$, $P_{\sigma}(-ic)$, $Z_{\sigma}(c)$, $\hat{Z}_{\sigma}(c)$, $\Phi_{\sigma,\varepsilon}(c)$, $\varepsilon = 0, 1$. By [\[2,](#page-17-3) 3.2(18)] the Legendre functions behave when $c \to +\infty$ as follows:

$$
P_{\sigma}(ic) \sim p(\sigma) \cdot e^{i\sigma\pi/2} \cdot c^{\sigma} + p(-\sigma - 1) \cdot e^{i(-\sigma - 1)\pi/2} \cdot c^{-\sigma - 1},
$$

\n
$$
P_{\sigma}(-ic) \sim p(\sigma) \cdot e^{-i\sigma\pi/2} \cdot c^{\sigma} + p(-\sigma - 1) \cdot e^{i(\sigma + 1)\pi/2} \cdot c^{-\sigma - 1},
$$

where

$$
p(\sigma) = 2^{\sigma} \pi^{-1} \mathcal{B}\left(\sigma + \frac{1}{2}, \frac{1}{2}\right),\,
$$

 $B(a, b)$ being the Euler beta function.

By [\(4.22\)](#page-10-2), (4.22) it gives that when $c \to +\infty$ we have

$$
Z_{\sigma}(c) \sim 2\pi \cdot p(\sigma) \cdot c^{\sigma} - \frac{2\pi}{\sin \sigma \pi} \cdot p(-\sigma - 1) \cdot c^{-\sigma - 1},
$$

$$
\widehat{Z}_{\sigma}(c) \sim 2\pi \cdot \cot \sigma \pi \cdot p(-\sigma - 1) \cdot c^{-\sigma - 1}.
$$

Therefore, as a mentioned-above basis f_1, f_2 of solutions of the equation $Lw = \lambda w$, $\lambda = \sigma(\sigma + 1)$, we can take the pair \widehat{Z}_{σ} , Z_{σ} . Then

$$
W_0 = (2\sigma + 1) \cdot 2\pi p(\sigma) \cdot 2\pi \cot \sigma \pi \cdot p(-\sigma - 1)
$$

= 4\pi.

Therefore, the solution f of equation (5.3) is

$$
f(c) = \frac{1}{4\pi} \Big\{ \widehat{Z}_{\sigma}(c) \int_{-\infty}^{c} Z_{\sigma}(t)h(t)dt + Z_{\sigma}(c) \int_{c}^{\infty} \widehat{Z}_{\sigma}(t)h(t)dt \Big\}.
$$

Thus, for Im $\lambda \neq 0$, the resolvent R_{λ} is an integral operator with the kernel

$$
K_{\lambda}(c,t) = \begin{cases} (1/4\pi)\widehat{Z}_{\sigma}(c)Z_{\sigma}(t), c > t, \\ (1/4\pi)Z_{\sigma}(c)\widehat{Z}_{\sigma}(t), c < t, \end{cases}
$$
(5.4)

here $\lambda = \sigma(\sigma + 1)$ and σ belongs to the half plane Re $\sigma > -1/2$ with the cut along the real axis.

Let $\varphi, \psi \in L^2(\mathbb{R})$. By the Titchmarsh–Kodaira theorem [\[1,](#page-17-4) XIII] we have

$$
(\varphi, \psi) = \lim_{\varepsilon \to +0} \frac{1}{2\pi i} \left[\int_{-\infty}^{\infty} (R_{\lambda - i\varepsilon} \varphi, \psi) d\lambda - \int_{-\infty}^{\infty} (R_{\lambda + i\varepsilon} \varphi, \psi) d\lambda \right].
$$

Let us pass to σ . Then $d\lambda = (2\sigma + 1)d\sigma$ and we denote $S_{\sigma} = R_{\lambda}$. The operator function S_{σ} is analytic in the half plane Re $\sigma > -1/2$. Therefore,

$$
(\varphi, \psi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (2\sigma + 1)(S_{\sigma}\varphi, \psi)\Big|_{\sigma=-1/2+i\rho} d\rho.
$$

We can keep here only the even part in ρ of the integrand:

$$
(\varphi, \psi) = \frac{1}{4\pi} \int_{-\infty}^{\infty} (2\sigma + 1) \left((S_{\sigma} - S_{-\sigma-1})\varphi, \psi \right) \Big|_{\sigma = -1/2 + i\rho} d\rho.
$$

Let us compute the kernel $M_{\sigma}(c, t)$ of the operator $S_{\sigma} - S_{-\sigma-1}$. Let $c > t$. By [\(5.4\)](#page-12-1) we have

$$
M_{\sigma}(c,t) = \frac{1}{4\pi} \left\{ \widehat{Z}_{\sigma}(c) Z_{\sigma}(t) - \widehat{Z}_{-\sigma-1}(c) Z_{-\sigma-1}(t) \right\}
$$

Let us insert here [\(4.22\)](#page-10-2) and (4.22) and use that the Legendre function P_{σ} is unchanged under $\sigma \mapsto -\sigma - 1$. We obtain (recall notation [\(4.15\)](#page-9-5)):

$$
M_{\sigma}(c,t) = -\frac{\pi \cos \sigma \pi}{2 \sin^2 \sigma \pi} \Big\{ B_{\sigma}(c) \widehat{B}_{\sigma}(t) + \widehat{B}_{\sigma}(c) B_{\sigma}(t) \Big\}.
$$
 (5.5)

For $c < t$, we obtain the same expression.

Further, if $\sigma = -1/2 + i\rho$, then for the Legendre function P_{σ} on the imaginary axis we have

$$
\overline{P_{\sigma}(ic)} = P_{\overline{\sigma}}(-ic) = P_{-\sigma-1}(-ic) = P_{\sigma}(-ic),
$$

or, in terms of B_{σ} :

$$
\overline{B_{\sigma}(c)} = \widehat{B}_{\overline{\sigma}}(c) = \widehat{B}_{-\sigma-1}(c) = \widehat{B}_{\sigma}(c).
$$

Therefore, equality [\(5.5\)](#page-13-0) gives

$$
(\varphi, \psi) = -\int_{-\infty}^{\infty} \frac{(2\sigma + 1)\cos \sigma \pi}{8\sin^2 \sigma \pi} \{ (\varphi, B_{\sigma})(B_{\sigma}, \psi) + (\varphi, \widehat{B}_{\sigma})(\widehat{B}_{\sigma}, \psi) \} \Big|_{\sigma = -1/2 + i\rho} d\rho.
$$
 (5.6)

This formula is the desired eigenfunction decomposition – in the basis B_{σ} , \widehat{B}_{σ} . Now let us pass in [\(5.6\)](#page-13-1) from B_{σ} , \widehat{B}_{σ} to $\Phi_{\sigma,\varepsilon}$, $\varepsilon = 0, 1$, by

$$
B_{\sigma} = \frac{1}{2\pi} \left(\cos \frac{\sigma \pi}{2} \cdot \Phi_{\sigma,0} + i \sin \frac{\sigma \pi}{2} \cdot \Phi_{\sigma,1} \right),
$$

$$
\widehat{B}_{\sigma} = \frac{1}{2\pi} \left(\cos \frac{\sigma \pi}{2} \cdot \Phi_{\sigma,0} + i \sin \frac{\sigma \pi}{2} \cdot \Phi_{\sigma,1} \right),
$$

then we obtain (5.1) .

6. Decomposition of a sesqui-linear form on the pair of hyperboloids

Let us consider the following sesqui-linear form $\mathcal{A}(h, f)$ defined on the pair $(\mathcal{D}(\mathcal{X}),$ $\mathcal{D}(\mathcal{Y})$:

$$
\mathcal{A}(h,f) = \int_{\mathcal{X}\times\mathcal{Y}} \delta([x,y]) h(x) \overline{f(y)} dx dy.
$$

The main result of our work consists of Theorem [6.1,](#page-14-0) which gives the decomposition of this form in terms of Fourier components of functions h and f . The decomposition contains Fourier components of the continuous series ($\sigma = -1/2 + i\rho$).

Theorem 6.1. The sesqui-linear form $\mathcal{A}(h, f)$ decomposes into Fourier components of the continuous series $F_{\sigma,0}f$ and $G_{\sigma}h$, $\sigma = -1/2 + i\rho$, $\rho \in \mathbb{R}$, as follows:

$$
\mathcal{A}(h,f) = \int_{-\infty}^{\infty} \mu(\sigma) \langle F_{\sigma,0}h, G_{\sigma}f \rangle_S \Big|_{\sigma = -1/2 + i\rho} d\rho, \tag{6.1}
$$

where

$$
\mu(\sigma) = 2\omega(\sigma)B\left(-\frac{\sigma}{2}, \frac{1}{2}\right) \tag{6.2}
$$

$$
= \frac{1}{16\pi^2} (2\sigma + 1) \cot \sigma \pi \cdot B\left(-\frac{\sigma}{2}, \frac{1}{2}\right), \tag{6.3}
$$

the factor $\omega(\sigma)$ is given by (5.2) , so that

$$
\mu\left(-\frac{1}{2} + i\rho\right) = \frac{1}{8}\pi^{-5/2}\rho\tanh\rho\pi \cdot \sin\left(\frac{1}{4} + \frac{i\rho}{2}\right)\pi \cdot \left|\Gamma\left(\frac{1}{4} + \frac{i\rho}{2}\right)\right|^2
$$

P r o o f. Let us take in [\(5.1\)](#page-11-1) as φ the characteristic function of the interval [0, a] divided by a and as ψ the function Mf , $f \in \mathcal{D}(\mathcal{Y})$. We can consider that $a \in [0,1]$. We obtain

$$
\frac{1}{a} \int_0^a \overline{Mf(c)} \, dc = \sum_{\varepsilon} \int_{-\infty}^\infty \Omega_{\varepsilon}(\rho) \left[\frac{1}{a} \int_0^a \overline{\Phi_{-1/2 + i\rho, \varepsilon}(c)} \, dc \right] d\rho,\tag{6.4}
$$

where we denoted

$$
\Omega_{\varepsilon}(\rho) = \omega(\sigma) (\Phi_{\sigma,\varepsilon}, Mf) \Big|_{\sigma = -1/2 + i\rho}
$$

= $\langle \Psi_{\sigma,\varepsilon}, f \rangle_{\mathcal{Y}} \Big|_{\sigma = -1/2 + i\rho},$

see [\(4.7\)](#page-7-6). Let a tend to 0. Then the left hand side of [\(6.4\)](#page-14-1) goes to $\overline{Mf(0)}$. Let us prove that we can pass to the limit under the integral over ρ in the right hand side of [\(6.4\)](#page-14-1). By the mean value theorem, the integral in the right hand side of (6.4) is equal to

$$
F_{\varepsilon}(a) = \int_{-\infty}^{\infty} \Omega_{\varepsilon}(\rho) \overline{\Phi_{-1/2 + i\rho, \varepsilon}(\eta)} d\rho,
$$
\n(6.5)

where η is a number in $[0, a]$ (depending on a, ρ and ε). We have to prove that

$$
F_{\varepsilon}(a) \to F_{\varepsilon}(0) \tag{6.6}
$$

when $a \rightarrow 0$, where

$$
F_{\varepsilon}(0) = \int_{-\infty}^{\infty} \Omega_{\varepsilon}(\rho) \overline{\Phi_{-1/2 + i\rho, \varepsilon}(0)} d\rho.
$$
 (6.7)

Let us take an arbitrary number $\gamma > 0$. In virtue of Theorem [4.2](#page-10-5) both functions $\Omega_{\varepsilon}(\rho)$, $\varepsilon = 0, 1$, decrease rapidly when $|\rho| \to 0$. Therefore, there exists a number A such that

$$
\int_{|\rho| \ge A} \left| \Omega_{\varepsilon}(\rho) \right| d\rho < \gamma. \tag{6.8}
$$

It follows from formula [\(4.4\)](#page-6-1) that the function $\Phi_{-1/2+i\rho,\varepsilon}(c)$ is bounded, i. e.

$$
\left| \Phi_{-1/2 + i\rho,\varepsilon}(c) \right| \leqslant N,\tag{6.9}
$$

N being some number, for all $\rho \in \mathbb{R}$, $\varepsilon = 0, 1$, and all c from some finite interval, for example, $[0, 1]$. Indeed, formula (4.4) implies the inequality

$$
\left| \Phi_{\sigma,\varepsilon}(c) \right| \leqslant \int_0^{2\pi} \left| c + \sqrt{c^2 + 1} \cdot \cos \alpha \right|^{-1/2} d\alpha \tag{6.10}
$$

since the function of c in the right hand side of (6.10) (it is the function $\Phi_{-1/2,0}$) is continuous with respect to c.

On the other hand, since the function $\Phi_{-1/2+i\rho,\varepsilon}(c)$ is continuous with respect to ρ and c, there exists a number $\delta > 0$ such that

$$
\left| \Phi_{-1/2+i\rho,\varepsilon}(\eta) - \Phi_{-1/2+i\rho,\varepsilon}(0) \right| < \gamma \tag{6.11}
$$

for $|\rho| \leqslant A$ and $0 \leqslant \eta < \delta$. Then for $0 < a < \delta$ we have

$$
\begin{split}\n\left| F_{\varepsilon}(a) - F_{\varepsilon}(0) \right| &\leq \int_{-\infty}^{\infty} \left| \Omega_{\varepsilon}(\rho) \right| \cdot \left| \Phi_{-1/2 + i\rho, \varepsilon}(\eta) - \Phi_{-1/2 + i\rho, \varepsilon}(0) \right| d\rho \\
&= \int_{-A}^{A} + \int_{|\rho| \geqslant A} \\
&\leq \gamma \int_{-A}^{A} \left| \Omega_{\varepsilon}(\rho) \right| d\rho + 2N \int_{|\rho| \geqslant A} \left| \Omega_{\varepsilon}(\rho) \right| d\rho \\
&\leqslant (C_{\varepsilon} + 2N)\gamma,\n\end{split} \tag{6.12}
$$

where

$$
C_{\varepsilon}\int_{-\infty}^{\infty}\Big|\Omega_{\varepsilon}(\rho)\Big|d\rho,
$$

here we used (6.5) , (6.7) – (6.9) , (6.11) . Inequality (6.12) proves (6.6) .

Now we may pass to the limit in (6.4) when $a \rightarrow 0$. We obtain

$$
\overline{Mf(0)} = \int_{-\infty}^{\infty} \omega(\sigma) \sum_{\varepsilon} \overline{\Phi_{\sigma,\varepsilon}(0)} \left\langle \Psi_{\sigma,\varepsilon}, f \right\rangle \mathcal{Y} \Big|_{\sigma = -1/2 + i\rho} d\rho. \tag{6.13}
$$

By (4.4) we have

$$
\Phi_{\sigma,\varepsilon}(0) = \int_0^{2\pi} (\cos \varphi)^{\sigma,\varepsilon} d\varphi
$$

= $[1 + (-1)^{\varepsilon}] \operatorname{B} \left(\frac{\sigma + 1}{2}, \frac{1}{2} \right).$

We see that $\Phi_{\sigma,\varepsilon}(0)$ is equal to zero for $\varepsilon = 1$, so that only one summand in [\(6.13\)](#page-15-5) remains – with $\varepsilon = 0$. Since

$$
\overline{\sigma} = -\sigma - 1 \quad \text{for} \quad \sigma = -1/2 + i\rho,\tag{6.14}
$$

equality (6.13) is

$$
\overline{Mf(0)} = \int_{-\infty}^{\infty} \mu(\sigma) \langle \Psi_{\sigma,0}, f \rangle_{\mathcal{Y}} \Big|_{\sigma = -1/2 + i\rho} d\rho,
$$
\n(6.15)

where $\mu(\sigma)$ is given by [\(6.3\)](#page-14-4), [\(6.4\)](#page-14-1).

The left hand side in [\(6.15\)](#page-16-0) is

$$
\overline{Mf(0)} = \int_{\mathcal{Y}} \delta\left([x^0, y] \right) \overline{f(y)} dy. \tag{6.16}
$$

Taking into account [\(6.16\)](#page-16-1) let us apply [\(6.15\)](#page-16-0) to a shifted function $(U_{\mathcal{Y}}(g)f)(y) = f(yg)$, $g \in G$. We get

$$
\int_{\mathcal{Y}} \delta\left([x, y] \right) \overline{f(y)} dy = \int_{-\infty}^{\infty} \mu(\sigma) \langle \Psi_{\sigma, 0}, U_{\mathcal{Y}}(g) f \rangle_{\mathcal{Y}} \Big|_{\sigma = -1/2 + i\rho} d\rho, \tag{6.17}
$$

where $x = x^0 g$.

Now multiply both sides of [\(6.17\)](#page-16-2) by a function $h(x)$ in $\mathcal{D}(\mathcal{X})$ and integrate over $x \in \mathcal{X}$. In the right hand side we may invert the order of integrations – in virtue of Lemma [6.1,](#page-16-3) see below. We obtain:

$$
\mathcal{A}(h,f) = \int_{-\infty}^{\infty} \mu(\sigma) \int_{\mathcal{X}} \langle \Psi_{\sigma,0}, U_{\mathcal{Y}}(g)f \rangle_{\mathcal{Y}} h(x) dx \Big|_{\sigma = -1/2 + i\rho} d\rho.
$$

The integral over X is nothing but the functional $K(\Psi_{\sigma,0}|h, f)$. Substituting its expression (4.10) in terms of Fourier components and taking into account (6.14) , we get (6.1) .

Lemma 6.1. For any function $f(y)$ in \mathcal{D}_y the integral in the right hand side of [\(6.17\)](#page-16-2) converges absolutely and uniformly with respect to $x = x^0g$ on any compact $V \subset \mathcal{X}$.

P r o o f. The hyperboloid $\mathcal X$ can be embedded into the group G as the product AK of subgroups A and K. By continuity of U_y , the union of supports of all functions $U_y(g)f$, where $g = ak$ is such that $x^0 g \in V$ is some compact W in \mathcal{Y} . By Theorem [4.1](#page-9-6) there exists $C > 0$ such that for any $g = ak$, $x^0 g \in V$, the following inequality holds

$$
\left| \langle \Psi_{\sigma,\varepsilon}, U_{\mathcal{Y}}(g) f \rangle_{\mathcal{Y}} \right| \leqslant C \cdot \max_{y} \left| \left(\Delta_{\mathcal{Y}}^{m} U_{\mathcal{Y}}(g) f \right) (y) \right| \cdot (\rho^2 + 1/4)^{-m}.
$$

Since Δy commutes with translations, we have

$$
\max_{y} \left| \left(\Delta_{\mathcal{Y}}^{m} U_{\mathcal{Y}}(g) f \right) (y) \right| = \max_{y} \left| \left(U_{\mathcal{Y}}(g) \Delta_{\mathcal{Y}}^{m} f \right) (y) \right| = \max_{y} \left| \Delta_{\mathcal{Y}}^{m} f(y) \right|,
$$

so that there exist numbers C_m , $m \in \mathbb{N}$, such that

$$
\left| \langle \Psi_{\sigma,\varepsilon}, U_{\mathcal{Y}}(g) f \rangle_{\mathcal{Y}} \right| \leqslant C_m \cdot (\rho^2 + 1/4)^{-m},
$$

for all $x = x^0 g \in V$ and all $m \in \mathbb{N}$, whence the lemma.

The quasiregular representation of $G = SO₀(1, 2)$ on X contains representations of the continuous series with multiplicity two and the analytic and antianalytic series with multiplicity one, and the quasiregular representation of G on $\mathcal Y$ contains representations of the continuous series with multiplicity one. Theorem [6.1](#page-14-0) gives

Theorem 6.2. The kernel of the Radon transform R consists of functions belonging to the discrete spectrum and to the odd part of the continuous spectrum on \mathcal{X} , its image goes in $C^{\infty}(\mathcal{Y})$. The kernel of the Radon transform R^* is $\{0\}$, its image consists of functions belonging to the even part of the continuous spectrum \mathcal{X} .

References

- [1] Н. Данфорд, J. T. Шварц, Линейные операторы. Т. II: Спектральная теория, Мир, М., 1966; англ. пер.:N. Dunford, J. T. Schwartz, Linear Operators. V. II: Spectral Theory, Wiley-Interscience, New York, 1988.
- [2] Г. Бейтмен, А. Эpдейи, Высшие тpансцендентные функции, М., Наука, 1965; англ. пер.:A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions I, McGraw-Hill, New York, 1953.
- [3] В. Ф. Молчанов, "Гармонический анализ на однородных пространствах", Некоммутативный гармонический анализ – 2, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 59, ВИНИТИ, М., 1990, 5–144; англ. пер.:V. F. Molchanov, "Harmonic analysis on homogeneous spaces", Representation Theory and Noncommutative Harmonic Analysis II, Encyclopaedia of Mathematical Sciences, 59, ed. A. A. Kirillov, Springer-Verlag Berlin Heidelberg, Berlin, 1995, 1–135 pp.
- [4] V.F. Molchanov, "Harmonic analysis on a pair of hyperboloids", Вестник Тамбовского университета. Серия Естественные и технические науки, 8:1 (2003), 149–150.
- [5] Н. Я. Виленкин, Спектральные функции итеория представлений групп, Наука, М., 1965; англ. пер.:N. J. Vilenkin, Special Functions and the Theory of Group Representations, Translations Mathematical Monographs, 22, Amer. Math. Soc., Providence, 1988.

Information about the author Информация об авторе

Vladimir F. Molchanov, Doctor of Physics and Mathematics, Professor of the Functional Analysis Department. Derzhavin Tambov State University, Tambov, the Russian Federation. E-mail: v.molchanov@bk.ru

ORCID: https://orcid.org/0000-0002-4065-2649

Received 19 September 2019 Reviewed 14 November 2019 Accepted for press 29 November 2019

Молчанов Владимир Федорович, доктор физико-математических наук, профессор кафедры функционального анализа. Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация. E-mail: v.molchanov@bk.ru

ORCID: https://orcid.org/0000-0002-4065-2649

Поступила в редакцию 19 сентября 2019 г. Поступила после рецензирования 14 ноября 2019 г. Принята к публикации 29 ноября 2019 г.