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In this paper we offer a variant of Radon transforms for a pair of dual hyperboloids in R?:
the one-sheeted hyperboloid X' : [z, x] =1 ([x,y] = —21y1+X2y2+x3y5 ) and the upper sheet
of the two-sheeted hyperboloid YV: [y,y] = —1,y; > 1 (the Lobachevsky plane). For a kernel
of these transforms we take 0([z,y]), = € X, y € Y, (t) being the Dirac delta function.
This kernel gives two Radon transforms R : D(X) — C>*()) and R*: D(Y) — C®(X). We
describe kernels and images of these transforms. For that we consider a sesqui-linear form
with the kernel §([x,y]) and write the decomposition of this form into inner products of
Fourier components. Results of this paper were announced in [4].

1. Hyperboloids

Let G be the group SOy(1,2), it is a connected group of linear transformations of R3,
preserving the form

[z, y] = —z191 + T2y + T3Y3.

We consider that G acts on R? from the right. In accordance with this we write vectors in
the row form.
Let us take the following basis of the Lie algebra g of the group

G
00 0 010 0 01
Lo=lo0o0 1|, =100, =00 0]. (L.1)
01 000 1 00
The Casimir element in the universal enveloping algebra of g is (1/2)A,, where

Ay =L+ L+ L3. (1.2)

Consider subgroups K, H, A of the group G generating by elements Ly, L;, Lo,
respectively. The subgroup K is a maximal compact subgroup of G.

Denote by X the one-sheeted hyperboloid [z,z] =1, and by ) the upper sheet of the
two-sheeted hyperboloid [y,y] = —1, y; > 1 (we consider that the x;-axis goes up). These
hyperboloids X and ) are homogeneous spaces of the group G with respect to translations
x +— xg, namely, X = G/H and Y = G/K. The subgroups H and K are stabilizers of
points 2% = (0,0,1) € X and 3° = (1,0,0) € Y respectively.

These hyperboloids have a G -invariant metric. It gives rise to the measures dx and dy
and the Laplace-Beltrami operators Ay and Ay respectively (all are G -invariant).

As local coordinates on the hyperboloids we can take any two variables from =z, zs, x3.
For Y it is natural to take ys,y3. Then we have

dv = |z1| 'daodrs, dy = y; ' dysdys,
0? 0? 0 0
Ay = D?+ Dy, Dy = 11—
X 83:'1 8 -3 + + Dy, D 5618 1+x28x2
0? 82 0
Ay = 2 D>+ Dy, D, =
y B2 (932 + Dy + D, Dh y28 " +Ys7— o0

If M is a manifold, then D(M) denotes the space of compactly supported infinitely
differentiable C-valued functions on M, with the usual topology, and D’(M) denotes



434 V.F. Molchanov

the space of distributions on M — of antilinear continuous functionals on D(M). For a
differentiable representation of a Lie group, we retain the same symbol for the corresponding
representations of its Lie algebra and of the universal enveloping algebra.

Let us denote by Uy and Uy representations of our group GG by translations on functions
on X and X respectively (quasiregular representations):

(Ux(9)f)(x) = f(zg), (Ux(9)f)y)= f(yg).

The representations Uy and Uy on the spaces L*(X,dz) and L?(Y,dy) are unitary with
respect to the inner products

(F, fix = /X F(a)f@)de, (F, f)y = /y F(u)T()dy. (1.3)

We have
Ux(Lg) = Ax, Uy(4g) = Ay. (1.4)

2. Representations of the group SOy(1,2)

Recall some material about the principal non-unitary series of representations of the
group G = SOy(1,2), see, for example, [5]. Let CT be the cone [z,z] =0, x; > 0. The
group G acts transitively on it. For o € C, let D,(C") be the space of C'* functions ¢
on C™ homogeneous of degree o :

o(te) =t7p(x), t > 0.

Let T, be the representation of G acting on this space by translations:

(T5(9)p)(x) = p(z9).

Take the section S of the cone C* by the plane z; = 1, it is a circle consisting of points
s = (1,sina, cos ). The Euclidean measure on S is ds = da. For a function ¢ on S,
sometimes we write ¢(«) instead of ¢(s). The representation 7T, can be realized on the
space D(S) as follows (index 1 indicates the first coordinate of a vector):

L)) = ¢ (5 ) o)t

The element A, see (1.2), goes to a scalar operator:
T,(Ay) =0(c+1)E. (2.1)

The Hermitian form

¢¢s—/¢ (2.2)

is invariant with respect to the pair (7,,7 5_1)

(To(9)0, 0)s = (0, T5-1(g7 " )p)s- (2.3)

This formula follows from ds = (sg); ' ds, where 5 = (sg)/(s9):.
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Define an operator A, in D(S):

(Aop)(s) = / (5, u)~" ().

The integral converges absolutely for Reoc < —1/2 and can be continued as a meromorphic
function to the whole o -plane. It has simple poles at ¢ € —1/2 + N. Here and further
N=1{0,1,2,...}. For A, we have

(Ao, p)s = (¥, Azp)s. (2.4)
The operator A, intertwines T, and T_,_q, i. e.
Tfafl(g)Aa = Ang(g), g ed.

A sesqui-linear form (A,v, p)s is invariant with respect to the pair (7,,7%). In particular,
for o € R, this form is an invariant Hermitian form for T,.
Take a basis ,,(a) = e™* m € Z, in D(S). It consists of eigenfunctions of A, :

Aowm = a(07 m)djm? (25)
where r( 2 )
— 902 (1) i . 2.6
alo,m) LS~ s pp—— (2:6)
The composition A,A_,_1 is a scalar operator:
AO-A,U,1 - 1 . E
8nw(o)
where w(o) is a “Plancherel measure” (see (5.2)):
(6) = o (20 + 1) cot (27)
wlo) = 55 5(20 coto. )

The representation 7, can be extended to the space D'(S) of distributions on S by
formula (2.3) where ¢ is a distribution and (i, ¢)s is the value of the distribution ¢ at a
test function . It is an extension in fact, since D(S) can be embedded into D’(S) by means
of the form (2.2), namely, we assign to a function ¢ € D(S) the functional ¢ — (¢, ¢)g in
D'(S).

Similarly the operator A, can be extended to the space D’(S) by means of formula
(2.4).

If o is not integer, then T, is irreducible and T, is equivalent to T_,_; (by A, or 20)

Let 0 € Z, n € N. Subspaces V,, and V, . spanned by %, for which m > —o and
m < o respectively are invariant. For o < 0 they are irreducible and orthogonal to each
other. For ¢ > 0 their intersection FE, is irreducible and has dimension 20 + 1.

Let V4 =D(S)/E, and V% _,=V_, 1, +V_, 1 _. Let us denote by T, o € Z, the
representation on V¢ generated by T,. The operator A, vanishes on E, and gives rise to
the equivalence 7% ~ T4, .
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There are four series of unitarizable irreducible representations: the continuous series
consisting of representations T, with ¢ = —1/2+ip, p € R, the inner product is (2.2); the
complementary series consisting of T, with —1 < ¢ < 1, the inner product is (A,v, p)g
with a factor; the holomorphic and antiholomorphic series. We need only their sum T, We
shall call T? the representations of discrete series. For ¢ € D(S), denote by @ the coset
of ¢ modulo E,. Then the invariant inner product (-,-), for T¢ is

(0, P)n = calAnth, @), n=a(n,n+1)"". (2.8)

3. Poisson and Fourier transforms

First we determine distributions ¢ in D’(S) invariant with respect to the subgroup H
under the representations T,. We shall use the following notation for a character of the
group R*:

= [t (sgnt)™,

where t € R* = R\ {0}, A € C, m € Z. In fact this character depends only on m modulo 2.
Here and further the sign “ =" means the congruence modulo 2.
It is easy to check that the distribution

90’,5 = Sg,a = [ 07 5]0757

where 0 € C, € =0,1, is H -invariant. Sometimes we write an integer instead of ¢ with the
same parity as €. As a function of o, 0,. is a meromorphic function — with simple poles at
points 0 € —1—&—2N. Its residue at ¢ = —n—1, n = ¢, is the distribution const-§™(s3)
concentrated at two points s = (1,£1,0). Here §(¢) is the Dirac delta function on the real
line (a linear continuous functional on D(R) ). The space of H -invariants has dimension 2
for ¢ # —n — 1, n € N; and dimension 3 for ¢ = —n — 1. Every irreducible subfactor for
T,, o € Z, contains, up to a factor, precisely one H -invariant. In particular, 6_,_; ,1; and
Onn+1 have non-zero projections into V', ;. and D'(S)/V], .. respectively.
The operator A, carries 0,. to _,_1. with a factor:

Aaea,e = j(U, 6)97071,57 (31)

where

jlo,e) =279 1/2T (—a - %) ['(o+1)[1—(—1)°coson]. (3.2)

It is easy to check that
j(O', €)j<—0' - 17 6) = (Sﬂ-w(o’))ila

where w(o) is given by (2.7) or (5.2). The factor j(c,e) has simple poles at 0 € —1/2+N.

By a general scheme [3], the H -invariant 6, . gives rise to the Poisson kernel P, .(x,s) =
[z,s]7¢, x € X, s € S. This kernel gives rise to two transforms. The first of them, the
Poisson transform P,.:D(S) — C*(X) is a linear continuous operator defined as follows:

(Pre)(z) = / (2. 517 (s)ds.

S
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It intertwines T_,_; with Uy, therefore, its image consists of eigenfunctions of the Laplace—
Beltrami operator:
AyoP,.=0(c+1)P,.

of parity e (see (2.1) and (1.4)). As a function in o, the Poisson transform behaves like
5. it depends on o meromorphically and has simple poles at 0 € —1 — ¢ — 2N.
Formula (3.1) gives
P, A, =j(o,e)Py_qp. (3.3)

Consider o € Z. The transform P_,_;,4; vanishes on F,, it generates an operator
on D(S)/E, which intertwines T¢ with Uy. The Poisson transform P, ,; considered on
Ve | intertwines T¢, , with Uy. By (3.3), P,,+1 has the same image as P_,_ 1,11

The second transform generated by the Poisson kernel is the Fourier transform F,. :
D(X) — D(S) defined by

(Fyef) (5) = / [z, 57 f (x)d.

It is meromorphic in ¢ with simple poles at points ¢ € —1 — ¢ — 2N. It intertwines Uy
with T,. It follows from (3.1) that

AUFU,.E = j(a, 5)F—U—1,a- (34>

For a function f € D(X), let us call two functions F,.f, ¢ =0,1, the Fourier components
of f corresponding to the representation 7.
The Fourier and Poisson transforms are conjugate to each other with respect to forms
(1.3) and (2.2):
(Poew, fla = (¢, F5cf)s-

This relation allows to extend the Poisson transform to distributions on S.

Consider the reducible case. The Fourier transform F, corresponding to T¢ is defined
as the map of D(X) to D(S)/E, which assigns to f € D(X) the corresponding coset of
the function F, ,1f. By (2.8) and (3.4) we have

(Bof, Fuh)n = do{F 1 nirf, Funiih)s, dn=2n1*/m(2n + 1)L

The Fourier transform corresponding to T‘_in_1 is Iy 11

The representation 7, has one up to a factor K -invariant, it is the function 7, equal
to 1 identically on S':

To(s) = [y s]7 = 1.
The representations of the discrete series have no K -invariants.

The corresponding Poisson transform @, : D(S) — C*()) and Fourier transform
D(Y) — D(S) are defined by

Qo)) = / =y, sl°p(s)ds,
(Goh) (s) = /y —y, s h(y)dy.
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Notice that [—y,s] >0 forall y €)Y and s € S.
The Poisson transform @), intertwines 7_,_; with Uy, therefore, its image consists of
eigenfunctions of the Laplace-Beltrami operator:

AyoQo:=0(04+1)Qpe. (3.5)

4. Spherical functions

Let 0 € C, ¢ =0,1. Let us define a spherical function ¥, . on the hyperboloid Y as
follows

Voely) = (T5(9)00:e T-5-1)s (4.1)
= <60,€>T—E—1(971)T—E—1>S
= /0075[—3;, 577 ds, (4.2)
S
where g € G is such that y% = y. As the distribution 6,. does, the spherical function
U, . is given by an integral absolutely convergent for Rec > —1 and can be continued
analytically in ¢ to a meromorphic function. It has poles where 6,. has and of the same

(the first) order.
The function ¥, (y) is a function of class C*> on ) invariant with respect to H :

U, (yh) = V,.(y), he H.
Therefore, it depends on y3 = [2°, 3] only:

Voe(y) = Poelys), (4.3)
where ®,.(c) is a function in C*(R).
Lemma 4.1. The function ®,. has the following integral representation:

o,

D, (c) = /O27r (c +Ve2+1-cos a) dov. (4.4)

P roof. Let us take in (4.1) as ¢g the matrix a = expt Lo, see (1.1),in A:

cosht 0 sinht
a = 0 1 0
sinht 0 cosht

We have
(T,(a)b,.) (s) = [2°, sa]”° = (sinht + s3 cosht)”< .

By (4.1), the value of W, at the point y’a = (cosht,0,sinht) is just (4.4) with ¢ = sinht.
0

It follows from (4.4) that the function ®,. has parity e:
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Equality (4.2) shows that the spherical function WU,. is the Poisson transform of the
H -invariant:

\IIO',E = Q—cf—lea,s- (45)
Consider ¥, . as a distribution on Y:

(Ve fy = /y U, () F(0) . (4.6)

where f € D(Y). The right hand side in (4.6) can be rewritten as an iterated integral, then
we obtain:

(U, fy = / " By (VML) () de (4.7)

—00

where

(MF)(e) = / 5y — o) f(y)dy,

y

The map M assigns to a function f its integrals over H -orbits. It is a continuous operator
from D(Y) onto D(R).

Lemma 4.2. The value (4.6) is expressed in terms of Fourier components:
<\IJU,£a f>y = <90',€7 G—O‘—lf)S' (48)

Proof. Let h(y) be a majorant of the function f(y), depending on y; only. Then for
Reo > —1 the right hand side in (4.8) is majorized by the integral

2w
/ |cosa|7da/ ‘[y, s
0 Yy

where 7 = Reo. In fact, the integral over ) here does not depend on s. Therefore, integral

—7—1

h(y)dy, (4.9)

(4.9) converges absolutely and the order of integration can be inverted. So we get equality
(4.8) for Reo > —1. To other o this equality is extended by analycity. O

Let ® be a distribution on ) invariant with respect to H. Assign to it two things: a
convolution with ® of functions f in D()) and a sesqui-linear functional K on the pair
(D(X), D(Y)). The convolution ® x f is the following function on X’:

(@ f)x) = (2,Uy(9)f)y
= /y D(y) f(yg)dy,

the functional is:

K(Q)’h,f) = <h76*f>/\’
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0

where h € D(X), f € D()Y) and g is an arbitrary element in G carrying z to z.

Since ® is H -invariant, these formulae do not depend on the choice of ¢ for given z. The
convolution is a linear map D(Y) — C*°(X), intertwining Uy and Uy :

D x (Uy(9)f) = Ux(g) (®* f).

For the spherical function W, ., the convolution and the functional are expressed in terms

of the Poisson and Fourier transforms:

(Yo x f)(2) = (PrcGo-1f)(2),
K(Woelh, f) = (Foeh,G5-1])s. (4.10)

The kernel K, (x,y) of the functional (4.10) is

Koe(x,y) = /5[56, 8|7 [—y, s] 7 'ds.

Lemma 4.3. The function U, . has the following property of symmetry in o :

1 —1)°
g, = tF(EDcosor (4.11)
' sSInomw ’

Proof By Lemma 4.2, (3.1), (2.4), (2.5) and Lemma 4.2 again we have:

0 616 Gzf)s

(0,6) " (Aboc, Gz f)s
(0,8) " (0, AzG5f) 5
(070)j(075>_1<90,5uG—E—1f>s
(0,0)5(0,) N (Wyr, fy.

Substituting here values of a(c,0) and j(o,¢) from (2.6) and (3.2), we get (4.11). O

<\Ij—a—1,87 f>y = <
= J\o
J

Q

= Qa >

Lemma 4.4. The spherical function V,. is an eigenfunction of the Laplace—Beltrami

operator:
Ay, =o(c+1)U,.. (4.12)

P r o o f. The function V¥,. is the Poisson transform of the function 6,., see (4.5).
It remains to remember (3.5). O

On functions depending on y3 = ¢ only, the operator Ay becomes to the following
differential operator (the H -radial part of Ay ):

L= (c+ 1)6— + 2c—=. (4.13)

Lemma 4.5. The function ®,., see (4.3) and (4.4), is an eigenfunction of L :

Lo, =0(c+1)P,,
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The lemma follows immediately from Lemma 4.4.

Theorem 4.1. The spherical function Y, (y) is expressed in terms of the Legendre
functions P, (see [2, Ch. IlI]) of the imaginary argument:

B 2m
o elom/2 + (_1

Vo) ezt Folins) + (Z1)Po(—iny) | (4.14)

P r o o f. Denote for brevity:
Py (it) = B, (t), (4.15)

also for a function ¢(t) on R we shall denote

Equality (4.14) is equivalent to the following expression of the function @, :

2T

(I)(T,E(C) = eio‘7r/2 + (_1

Jee—ion/?2 {Bo(c> + (—1)637(@)} : (4.16)

So we have to prove (4.16).
The Legendre function P,(z) is analytic in the z-plane with the cut (—oo, —1], satisfies
the equation:

((22 - 1)% + 22%) w=o(c+1)w (4.17)

and has the integral representation

P(2) = — /OQW (Z + /22— 1cos oz)a da. (4.18)

:27'('

Let o be not integer. Then the functions P,(z) and P,(z) form a basis of solutions of
equation (4.17). For z =ic equation (4.17) becomes the equation:

Lw=o(0c+ 1)w.

In virtue of Lemma 4.5 the function ®,. is a linear combination of functions B, and
B\O. Coefficients of this linear combination could be found out by computing values of
functions ®,., B, and EU and their derivatives at the point ¢ = 0, using (4.6) and
explicit expressions |2, 3.4(20),(23)]. But it is more convenient for us to find them in another
way.

Let z tend to ic, ¢ € R, in (4.18) such that Rez > 0. We get:

1 . 2m o
B,(c) = —e“’”/z/ (c + V24 1cosa — iO) dov. (4.19)

27 0

Denote

2m o
Z,(c) :/ <c+\/62+1cosa—i0> da.
0

+
Then

27 P
Zy(c) = / <c+\/02+lcosoz—z'0> da.
0 -
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Applying to (4.19) the formula:

(t —i0)7 = t7 4+ e "7,

we obtain .
B, = — [ew’r/QZa v e_i”/zz,} , (4.20)
2m
whence .
B, = — [e_i"”/QZg n em/QZ,} . (4.21)
From (4.20) and (4.21) we have
_ m iom/2 —ion/2 D
Z, = — [e B, —e Bo}, (4.22)
isinom
7, = - .7T [ _eTioT/2B 4 eioﬂ/2§gi| ' (4.23)
isinom
Since
Oy = Zy + (177,
we obtain (4.16) by (4.22) and (4.22). O

Let us establish some estimates for spherical functions of the continuous series
(0 =—1/2+1ip). They show that values of these spherical functions at f decrease rapidly
when their parameter p tends to infinity.

Theorem 4.2. Let 0 = —1/2+1ip, p € R. For any compact set W C Y, there exists a
number C > 0 such that for any f € D(Y) with the support in W the following estimate
holds:

|<\I}U757 fivl<C- m;xx ‘ (Agbf) (y)| (102 +1/4)7™", meN. (4.24)

Proof Take h € D(Y) depending on y; only, such that h(y) >0, h(y) =1 on W.
Then ph, where p = max|f(y)|, is a majorant for f depending on y; only. Arguing as in
the proof of Lemma 4.2, we obtain

|<\Ilcr,sa f>37‘ < C',u, (425)

where C' is the number
2
C:/ \cosa\l/zda/[—y, s]7Y2h(y) dy.
0 y

Now apply the estimate (4.25) to the function AY f, m € N, transfer the operator Ay to
the function ¥, ., since it is self-adjoint, and use (4.12). Since |o(c + 1)] = p* + 1/4 for
o=—1/2+ip, we get (4.24). O

Let us write expressions of VU,. for o integer. In the notation ¥,. sometimes it is
convenient to write an integer instead of £ with the same parity as e.
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Let n € N. Let first 0 =n. For U, 1 we have to evaluate an indeterminacy in (4.14).
We have

an,n(Q) == QWZ_nPn(Zys),
\Ijn,n—&—l = _421_71@:1(2?43)7

where P,(z) is the Legendre polynomial and Q7 (z) is the Legendre function which differs
from the Legendre function of the second kind @,(z) by the cut on the z-plane: for @, (2)
one takes the cut [—1, 1], but for @ (z) one has to take the cut (—oo, —1]U[1, c0) ; therefore,
we have:

. 1 1+2

Qr(z) = éPn(z) In .

cf. |2, 3.6(24)], where the principal branch of the logarithm is taken and W, _1(z) is a
polynomial of degree n — 1 indicated in |2, 3.6.2].

For ¢ = —n — 1 we use the relation (4.11). For ¢ = n the function ¥,. has a pole at

— Wii(2),

o = —n — 1 because of 8,.. We have

\IIfnfl,TH»l = 07
Resoe 1V, = (1) (2/7) 0,

5. Eigenfunction decomposition of the radial part
of the Laplace-Beltrami operator
In this Section we obtain the eigenfunction decomposition of the operator (see (4.13))
02 0
L=(*41) = +2c=
(" + )802 - “ac

defined on the real line R. We use the function ®,.(c), see (4.3) and (4.4). Recall that it
has parity ¢ and satisfies the equation:

Lw=o(0c+ 1)w.

Let us denote by (p,%) the L?(R) inner product of functions ¢, :

(0, ) = / " (0 de.

Theorem 5.1. There is the following eigenfunction decomposition of the operator L :

(e = [ )Xo 0@l 6.0)

where

w(o) (20 4+ 1) cotom (5.2)

~ 3272
so that

1 1
w —E—Hp :Wptanhpﬂ.
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P roo f. Let us write the resolvent Ry = (A\E — L)™' of the operator L. Let h € L*(R)
and Ryh = f, then h = (AE — L)f, so that

Lf —\f =—h. (5.3)

Let us take A in the form A = o(o 4+ 1). The correspondence o +— A maps the half plane
Reo > —1/2 onto the A-plane with the cut (—oo,—1/4] one-to-one.

Let fi1, fo be eigenfunctions of the operator L with the eigenvalue A\ = o(c + 1) with
Reos > —1/2. They behave at infinity (+o00) as Alc|” + Blc|™7!. Let us take them such
that they are square integrable at +0o0 and —oo respectively. Then for ¢ — +o00:

f1(6> ~ Blc_”_l,
f2(C) ~ A200+BQC_U_1,

and for ¢ = —00:

fl(C) ~ Cl‘C|J+D1|C’_J_1,
fale) ~ Dyle| =t

The wronskian W of these functions is

Wo
W = 62——{—]_’ WO = (26 + ]_)BlAQ
We have already several eigenfunctions: P, (ic), P,(—ic), Z,(c), Z,(c), ®,.(c), e=0,1
By [2, 3.2(18)] the Legendre functions behave when ¢ — +oo as follows:

PU(’iC) ~ p(O') . ez‘mr/Z c +p(_0_ _ 1) . ei(—a—l)rr/Q . C_U_l,
PJ(—iC) ~ p(O’) . e—i(ﬂr/Q ° +p(_0_ i 1) X ei(a+1)7r/2 . C—U—l7

where
1 1

:20 71B - -
p(o) ™ (0+2, 2),

B(a, b) being the Euler beta function.
By (4.22), (4.22) it gives that when ¢ — 400 we have

Zo(e) ~ 2m-p(0) - — —— p(—o—1)- 7,
—o—1

Zy(c) ~ 2m-cotom-p(—o—1)-c

Therefore, as a mentioned-above basis f;, fo of solutions of the equation Lw = A\w,
A =o0(o+ 1), we can take the pair Z,, Z,. Then

Wy = (204+1)-27p(0)-2wcotonm - p(—o — 1)
= Am.

Therefore, the solution f of equation (5.3) is

Flo) = i{}(c) /_ " Z,(Oh(t)dt + Z,(c) / N Z(t)h(t)it )

[e.9]
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Thus, for ImA # 0, the resolvent R, is an integral operator with the kernel

(/A Z () Z, (1), ¢ > t,
Balert) = { (1/47) Z, () Z, (1), ¢ < 1, (54)

here A = o(0c + 1) and o belongs to the half plane Resc > —1/2 with the cut along the
real axis.
Let ¢,v € L*(R). By the Titchmarsh-Kodaira theorem |1, XIII| we have

1 9] 0
(()07 w> = al—i>r—l;-10 % |:/_Oo (R)\fisgp7 ¢) X — /_OO (R/\Jrisgpa w) d)\‘| .

Let us pass to 0. Then d\ = (20 4+ 1)do and we denote S, = R). The operator function
S, is analytic in the half plane Reo > —1/2. Therefore,

1 o0
= — 2 1) (S5,
() =5 | CotDiSwen)|
We can keep here only the even part in p of the integrand:
1 o0
(po0) =4 [ @+ DS = Seo)e)

o o=—1/2+ip

Let us compute the kernel M,(c,t) of the operator S, —S_,_1. Let ¢ >t. By (5.4) we
have

dp.

dp.

Molert) = 3= 2o(0)Z0(t) = 2y ()75 1(8)}

Let us insert here (4.22) and (4.22) and use that the Legendre function P, is unchanged
under o +— —o — 1. We obtain (recall notation (4.15)):

M, (c,t) = —M{Ba(c)éo(t) n Eg(c)Ba(t)}. (5.5)
2sin“om
For ¢ < t, we obtain the same expression.
Further, if 0 = —1/2 +ip, then for the Legendre function P, on the imaginary axis we
have

P,(ic) = Ps(—ic) = P_,_1(—ic) = P,(—ic),
or, in terms of B, :
Bo() = By(c) = Bo-1(c) = Bo(0)
Therefore, equality (5.5) gives

o) = — [ BLENSTT b 5,.0)

oo 8sin” omw

+ (9. B)(Bov)}

dp. (5.6)

o=—1/2+ip

This formula is the desired eigenfunction decomposition — in the basis B,, EU.
Now let us pass in (5.6) from B,, B, to ®,., ¢ =0,1, by

1 o .. oT
BU = % <COS 7 . (I)0-70 “+ 281n 7 . (1)0-71> s
~ 1
B, = o (COS % - D, 0+ isin % . <I)071> ,

then we obtain (5.1). O
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6. Decomposition of a sesqui-linear form on the pair of hyperboloids
Let us consider the following sesqui-linear form A(h, f) defined on the pair (D(X),
D(Y):
At )= |8l )@ F)dady,
XxY

The main result of our work consists of Theorem 6.1, which gives the decomposition of this
form in terms of Fourier components of functions A and f. The decomposition contains
Fourier components of the continuous series (o0 = —1/2 +ip).

Theorem 6.1. The sesqui-linear form A(h, f) decomposes into Fourier components of
the continuous series F,of and G,h, 0 =—1/2+1ip, p € R, as follows:

Alh, f) = / " 0) (Froh, G f)s ap, (6.1)

0o o=—1/2+ip

where
o) = 20008 (-3, 5) (62)

1 o 1
= 6 (20 +1)cotom - B <—§, 5) , (6.3)

the factor w(o) is given by (5.2), so that

IR W S . (1 p ’ 1 p ‘2
,u( 2—1—2,0)—87r ptanh pm sm(4—|—2 m- I 4+2
Proof. Let ustakein (5.1) as ¢ the characteristic function of the interval [0, a] divided
by a and as v the function M f, f € D()). We can consider that a € [0,1]. We obtain

1 a— [o¢] 1 a—
2/ UCIEDS | o] ; [ # e i (6.4)
where we denoted
Q(p) = w(o)(Pos MS)

= <\I/O',67 f>y

o=—1/2+ip

Y
o=—1/2+ip

see (4.7). Let a tend to 0. Then the left hand side of (6.4) goes to M f(0). Let us prove
that we can pass to the limit under the integral over p in the right hand side of (6.4). By
the mean value theorem, the integral in the right hand side of (6.4) is equal to

F0) = [ 00 a1 (6.5)

—00

where 7 is a number in [0,a] (depending on a, p and €). We have to prove that

Fe(a) — F(0) (6.6)
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when a — 0, where
PO = [ Q)8 a0 (6.7

Let us take an arbitrary number 7 > 0. In virtue of Theorem 4.2 both functions Q.(p),
e =0,1, decrease rapidly when |p| — 0. Therefore, there exists a number A such that

[ Jooo < (6.8)
lp|=A
It follows from formula (4.4) that the function ®_;/51,,.(c) is bounded, i. e.

1 2ripe0) <V, (6.9)

N being some number, for all p € R, ¢ = 0,1, and all ¢ from some finite interval, for
example, [0,1]. Indeed, formula (4.4) implies the inequality

2m
‘(bm(c)‘é/ c+ Vet +1-cosa
0

since the function of ¢ in the right hand side of (6.10) (it is the function ®_1/59) is
continuous with respect to c.

‘1/2

dov (6.10)

On the other hand, since the function ®_;/54,,.(c) is continuous with respect to p and
¢, there exists a number § > 0 such that

‘(I)—l/Q-i-ip,a(n) - ‘P—l/zm,a(o)‘ <7 (6.11)

for |p| < A and 0 <7 < 4. Then for 0 < a < § we have

F() = RO < [ 1000)] - [0oymeine) = ©1pmrine 0)]do
|

A
.
—A

pI=A
A
< v/ |owlaocon [ Jap)d
-A lp|=A
< (C.+2N)y, (6.12)

where

Ce. /_: Qs(p)‘dp,

here we used (6.5), (6.7)—(6.9), (6.11). Inequality (6.12) proves (6.6).
Now we may pass to the limit in (6.4) when @ — 0. We obtain

w7 - [ " o) Y B0 (U )y

dp. (6.13)

o=—1/2+ip

By (4.4) we have
27
®,.(0) = / (cos ) dyp
0

= [1+(—1)5]B(g;1, %)
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We see that @, .(0) is equal to zero for € = 1, so that only one summand in (6.13) remains
— with ¢ = 0. Since
cg=—0c—1 for o=-1/2+1ip, (6.14)

equality (6.13) is

MO = [ o) enidl| o (6.15)
where u(o) is given by (6.3), (6.4).
The left hand side in (6.15) is
MF0) = [ o (1a".) Ty (6.16)

Taking into account (6.16) let us apply (6.15) to a shifted function (Uy(g)f) (v) = f(vyg),
g € G. We get

/y 5 ([ y]) T@)dy = / " )W, Up(9) )y ap. (6.17)

0o o=—1/2+ip

where z = 2.

Now multiply both sides of (6.17) by a function h(x) in D(X) and integrate over x € X.
In the right hand side we may invert the order of integrations — in virtue of Lemma 6.1, see
below. We obtain:

A )= [ e /X (o0, Uy(9) )y h(z)dz dp.

o o=—1/2+ip

The integral over X is nothing but the functional K (WU, |h, f). Substituting its expression
(4.10) in terms of Fourier components and taking into account (6.14), we get (6.1). O

Lemma 6.1. For any function f(y) in Dy the integral in the right hand side of (6.17)
converges absolutely and uniformly with respect to © = 2% on any compact V C X.

P r oo f. The hyperboloid X can be embedded into the group G as the product AK of
subgroups A and K. By continuity of Uy, the union of supports of all functions Uy (g)f,
where g = ak is such that 2°g € V' is some compact W in Y. By Theorem 4.1 there exists
C > 0 such that for any g = ak, 2°g € V, the following inequality holds

(Vo Up(g) )y | < € max | (A5UM(9)S ) )] - (62 + 1/4)
Since Ay commutes with translations, we have

max | (A§Uy(9)) (v)] = max | (Un(9)A5F) ()| = maxx | A5 £(y)]

so that there exist numbers C,,, m € N, such that
(Vo Un(9) )y < Con- (22 4+ 1/4)77,

for all # = 2% € V and all m € N, whence the lemma. O
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The quasiregular representation of G = SOg(1,2) on X contains representations of

the continuous series with multiplicity two and the analytic and antianalytic series with
multiplicity one, and the quasiregular representation of G on ) contains representations of
the continuous series with multiplicity one. Theorem 6.1 gives

Theorem 6.2. The kernel of the Radon transform R consists of functions belonging to

the discrete spectrum and to the odd part of the continuous spectrum on X, its image goes
in C*®(Y). The kernel of the Radon transform R* is {0}, its image consists of functions
belonging to the even part of the continuous spectrum X.

1]

2]

3]

4]
5]
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